A flower-like BiOBr photocatalyst(CS/BiOBr)was prepared by using the carbon material derived from corn straw(CS)as the carrier.The prepared composites were characterized by X-ray diffraction(XRD),Fourier transform inf...A flower-like BiOBr photocatalyst(CS/BiOBr)was prepared by using the carbon material derived from corn straw(CS)as the carrier.The prepared composites were characterized by X-ray diffraction(XRD),Fourier transform infrared(FIIR)spectra,scanning electron microscope(SEM),X-ray photoelectron spectra(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).The SEM analyses indicate that the introduction of CS promotes the formation of a unique flower-like structure in BiOBr,which not only optimizes the efficiency of light capture but also increases the specific surface area of BiOBr.The bandgap of the composite was narrower compared with the pure BiOBr.The CS/BiOBr composites exhibited higher photocatalytic activity than pure CS and BiOBr under visible light irradiation,and a higher first-order reaction rate constant(k)of 0.0437 min-1 than BiOBr(0.0146 min^(-1)),and exhibited excellent stability and reusability during the cyclic run.The enhanced photocatalytic activity is attributed to the efficient separation of photoinduced electrons and holes.Superoxide radicals and holes were the major active species.展开更多
文摘A flower-like BiOBr photocatalyst(CS/BiOBr)was prepared by using the carbon material derived from corn straw(CS)as the carrier.The prepared composites were characterized by X-ray diffraction(XRD),Fourier transform infrared(FIIR)spectra,scanning electron microscope(SEM),X-ray photoelectron spectra(XPS),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).The SEM analyses indicate that the introduction of CS promotes the formation of a unique flower-like structure in BiOBr,which not only optimizes the efficiency of light capture but also increases the specific surface area of BiOBr.The bandgap of the composite was narrower compared with the pure BiOBr.The CS/BiOBr composites exhibited higher photocatalytic activity than pure CS and BiOBr under visible light irradiation,and a higher first-order reaction rate constant(k)of 0.0437 min-1 than BiOBr(0.0146 min^(-1)),and exhibited excellent stability and reusability during the cyclic run.The enhanced photocatalytic activity is attributed to the efficient separation of photoinduced electrons and holes.Superoxide radicals and holes were the major active species.