期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
1
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(bilstm)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于IMVMD和BiLSTM-SARIMA组合模型的台区光伏短期发电功率预测
2
作者 李承皓 杨永标 +2 位作者 宋嘉启 张翔颖 徐青山 《太阳能学报》 北大核心 2025年第2期433-440,共8页
针对台区分布式光伏短期发电功率预测精度低的难题,提出一种基于增强型鲸鱼优化算法的多元变分模态分解方法,并结合反向传播神经网络耦合双向长短期记忆网络和季节性差分自回归滑动平均的组合模型,实现台区分布式光伏短期发电功率预测... 针对台区分布式光伏短期发电功率预测精度低的难题,提出一种基于增强型鲸鱼优化算法的多元变分模态分解方法,并结合反向传播神经网络耦合双向长短期记忆网络和季节性差分自回归滑动平均的组合模型,实现台区分布式光伏短期发电功率预测。首先对鲸鱼优化算法的收敛因子、权重等进行改进,然后用它去优化多元变分模态分解方法中的通道数量和惩罚因子,得到最佳分解效果的参数值。再针对与外界气象等因素强相关的光伏发电功率时间序列数据,利用改进多元模态分解将序列最优分解。将分解后的各模态分量输入到单独构建的双向长短期记忆网络和季节性差分自回归滑动平均模型中,获取分量预测值,两个模型得到的分量预测值分别叠加得到各自的完整预测结果。将它们分别乘以权重后相加即为最终预测结果,权重通过反向传播神经网络进行修正。仿真结果说明相比于其他方法,所提模型能有效提高光伏短期发电的预测精度。 展开更多
关键词 模态分解 神经网络 光伏发电 预测 bilstm SARIMA
在线阅读 下载PDF
基于小波变换和CNN-BiLSTM的电力电缆故障定位
3
作者 任晶晶 王耀辉 《通信电源技术》 2025年第7期240-242,共3页
文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升... 文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升故障定位的精准性。为验证提出算法的有效性,将True、BiLSTM、极值域均值模式分解(Extremum field Mean Mode Decomposition,EMMD)+小波变换算法与本文算法进行对比实验分析。实验结果表明,基于小波变换和CNN-BiLSTM的电力电缆故障定位算法能够将定位误差控制在0.02 km以内,显著提高了故障定位的精度。 展开更多
关键词 小波变换 卷积神经网络(CNN) 双向长短期记忆(bilstm) 电力电缆故障定位
在线阅读 下载PDF
基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测 被引量:1
4
作者 许亮 任圆圆 李俊芳 《汽车工程师》 2024年第3期1-7,共7页
为解决质子交换膜燃料电池(PEMFC)剩余使用寿命(RUL)预测精度不高的问题,提出了一种基于北方苍鹰优化(NGO)、卷积神经网络(CNN)和双向长短时记忆(BiLSTM)神经网络的动态燃料电池RUL预测模型。首先,利用NGO对CNN-BiLSTM模型的学习率、隐... 为解决质子交换膜燃料电池(PEMFC)剩余使用寿命(RUL)预测精度不高的问题,提出了一种基于北方苍鹰优化(NGO)、卷积神经网络(CNN)和双向长短时记忆(BiLSTM)神经网络的动态燃料电池RUL预测模型。首先,利用NGO对CNN-BiLSTM模型的学习率、隐藏节点及正则化系数进行寻优,然后,通过CNN-BiLSTM模型的卷积层对输入数据进行特征提取,输入到BiLSTM层进行时序建模和预测。同时,利用小波阈值去噪算法对原始数据进行平滑处理,采用皮尔逊相关系数提取模型输入变量,并搭建NGO-CNN-BiLSTM神经网络功率预测模型。仿真验证结果表明,该方法预测精度达99.49%,高于其他对比模型的预测精度。 展开更多
关键词 质子交换膜燃料电池 NGO-CNN-bilstm网络 剩余使用寿命预测
在线阅读 下载PDF
基于改进VMD与BiLSTM的滚动轴承剩余寿命预测模型 被引量:1
5
作者 潘磊 皋军 邵星 《电子设计工程》 2024年第4期27-31,共5页
为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimizati... 为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。 展开更多
关键词 滚动轴承 变分模态分解 横向振动信号 粒子群优化算法 双向长短时记忆网络
在线阅读 下载PDF
结合Word2vec和BiLSTM的民航非计划事件分析方法 被引量:1
6
作者 王捷 周迪 +1 位作者 左洪福 黄维 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期917-924,共8页
安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采... 安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采用Word2vec模型针对事件文本语料进行词向量训练,缩小空间向量维度;然后通过BiLSTM模型自动提取特征,获取事件文本的完整序列信息和上下文特征向量;最后采用softmax函数对民航非计划事件进行分类。实验结果表明,所提出的方法分类效果更好,能达到更优的准确率和F 1值,对不平衡数据样本同样具有较稳定的分类性能,证明了该方法在民航非计划事件分析上的适用性和有效性。 展开更多
关键词 民航安全 文本分析 非计划事件 Word2vec 双向长短期记忆(bilstm)神经网络
在线阅读 下载PDF
基于ARN和BiLSTM的轴承剩余寿命预测方法 被引量:3
7
作者 徐嘉杰 沈艳霞 《噪声与振动控制》 CSCD 北大核心 2024年第2期136-142,255,共8页
针对深度学习方法进行轴承剩余使用寿命(Remaining Useful Life,RUL)预测时出现的网络退化和噪声信号干扰问题,提出一种基于注意力残差降噪模型(Attention and Residual Network,ARN)和双向长短时记忆网络(Bidirectional Long-Short-Ter... 针对深度学习方法进行轴承剩余使用寿命(Remaining Useful Life,RUL)预测时出现的网络退化和噪声信号干扰问题,提出一种基于注意力残差降噪模型(Attention and Residual Network,ARN)和双向长短时记忆网络(Bidirectional Long-Short-Term Memory network,BiLSTM)的轴承剩余使用寿命预测方法。ARN融合了卷积注意力机制(Convolution Block Attention Module,CBAM)和残差网络,利用通道和空间双维度注意力降低噪声特征的权重,结合软阈值函数进行降噪处理,能够同时提取到更多全局和局部的振动特征来构建健康指标(Health Indicator,HI)。以健康指标作为输入,通过BiLSTM网络映射得到RUL预测值。在IEEE PHM 2012轴承数据集上进行所提方法与其他健康指标构建模型和RUL预测模型的对比实验,结果表明在6种不同信噪比下(-5、-3、-1、1、3、5 dB),所提方法的抗噪能力最强,预测误差最小。 展开更多
关键词 故障诊断 剩余使用寿命 轴承 注意力机制 残差网络 双向长短时记忆网络
在线阅读 下载PDF
基于改进BiLSTM-CRF模型的网络安全知识图谱构建 被引量:3
8
作者 黄智勇 余雅宁 +2 位作者 林仁明 黄鑫 张凤荔 《现代电子技术》 北大核心 2024年第6期15-21,共7页
针对网络安全领域的图谱构建任务,基于BiLSTM-CRF模型引入了外部网络安全词典来加强网络安全文本的特征,并结合多头注意力机制提取多层特征,最终在网络安全数据集取得了更优异的结果。利用企业内部的日常网络运维数据,设计并构建了一个... 针对网络安全领域的图谱构建任务,基于BiLSTM-CRF模型引入了外部网络安全词典来加强网络安全文本的特征,并结合多头注意力机制提取多层特征,最终在网络安全数据集取得了更优异的结果。利用企业内部的日常网络运维数据,设计并构建了一个面向企业网络安全运维管理的知识图谱,为后续进一步研究基于图谱的企业网络安全智能决策等应用奠定基础。 展开更多
关键词 bilstm-CRF 网络安全 知识图谱 特征提取 企业网络 注意力机制 本体建模 知识抽取
在线阅读 下载PDF
基于CNN-BiLSTM的航空发动机滑油流量故障诊断预测方法研究
9
作者 张青 赵洪利 杨佳强 《内燃机与配件》 2024年第8期84-87,共4页
航空发动机滑油系统为整个发动机的传动系统、轴承齿轮等部件提供滑油,是保证航空发动机正常运行的重要系统,因此准确对航空发动机滑油量进行预测是对保证飞机飞行的安全有重要意义的。为了提高预测准确性,提出了一种基于CNN-BiLSTM的... 航空发动机滑油系统为整个发动机的传动系统、轴承齿轮等部件提供滑油,是保证航空发动机正常运行的重要系统,因此准确对航空发动机滑油量进行预测是对保证飞机飞行的安全有重要意义的。为了提高预测准确性,提出了一种基于CNN-BiLSTM的航空发动机滑油流量预测模型,可以同时捕捉数据中的空间特征以及时序关系。以某航QAR数据进行验证,结果与CNN和LSTM模型进行对比,左发预测准确率提升了2.43%和7.85,右发预测准确率提升了7.97%和10.82%,证明了本文所提方法的有效性,为航空发动机滑油流量故障诊断的预测方法提供了新的解决方案。 展开更多
关键词 航空发动机 CNN-bilstm 滑油流量预测 深度神经网络 快速存取(QAR)数据
在线阅读 下载PDF
基于字词向量的BiLSTM-CRF水利工程巡检文本实体识别模型 被引量:3
10
作者 刘雪梅 程彭圣男 +3 位作者 李海瑞 曹闯 高英 崔培 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第3期9-17,共9页
命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提... 命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提出字词向量融合的BiLSTM-CRF模型,首先将巡检文本分别在字维度和词维度进行向量化处理,合并字词向量获取字词向量特征;然后利用BiLSTM神经网络获取序列化后的上下文特征;最后通过CRF进行解码并提取相应实体。以南水北调中线工程巡检文本为例,实验结果表明:字词向量结合之后的方法能有效提高识别性能,对实体边界的识别效果更优,模型准确率、召回率和F1值分别可以达到93.79%、93.06%、93.42%;时间效率较BERT-BiLSTM-CRF模型的时间效率提高82.86%。基于字词向量的BiLSTM-CRF模型可为水利工程知识图谱的快速构建提供技术支撑。 展开更多
关键词 巡检文本 实体识别 双向长短期记忆神经网络 Word2Vec 条件向量场
在线阅读 下载PDF
基于奇异谱分析的CNN-BiLSTM短期空调负荷预测模型 被引量:2
11
作者 杨心宇 任中俊 +2 位作者 周国峰 易检长 何影 《建筑节能(中英文)》 CAS 2024年第3期64-73,共10页
空调负荷的精准预测对建筑空调系统优化控制具有重要意义。为提高空调负荷预测精度,提出了一种基于奇异谱分析(SSA,Singular Spectrum Analysis)的卷积神经网络(CNN,Convolutional Neural Network)和双向长短时记忆网络(BiLSTM,Bidirect... 空调负荷的精准预测对建筑空调系统优化控制具有重要意义。为提高空调负荷预测精度,提出了一种基于奇异谱分析(SSA,Singular Spectrum Analysis)的卷积神经网络(CNN,Convolutional Neural Network)和双向长短时记忆网络(BiLSTM,Bidirectional Long Short Term Memory)短期空调负荷预测模型。使用皮尔森相关系数选取与空调负荷高相关性特征。针对空调负荷的波动性和随机性,采用SSA将空调负荷分解为多个分量,同时将各个分量带入CNN-BiLSTM模型进行预测,该模型利用了CNN的特征提取和BiLSTM的双向学习能力,并将各个分量预测结果进行重构。通过不同建筑类型的空调数据对该模型进行验证分析,发现所提出模型在预测办公建筑空调负荷中RMSE、MAPE和MAE为19.47RT、14.72RT和2.33%,在预测商业建筑空调负荷中RMSE、MAPE和MAE为82.5RT、34.21RT和0.87%。结果表明,所提出的模型具有普适性且精度较高,可进行推广应用。 展开更多
关键词 空调负荷预测 双向长短时记忆网络 奇异谱分析 卷积神经网络
在线阅读 下载PDF
基于CEEMD-ITSA-BiLSTM组合模型的短期负荷预测
12
作者 高典 张菁 《电子科技》 2024年第4期30-37,共8页
准确预测电力系统短期负荷有助于灵活规划系统资源、合理安排机组工作调度以及提高系统运行效率。针对负荷预测精度问题,文中提出了一种基于CEEMD-ITSA-BiLSTM(Complete Ensemble Empirical Mode Decomposition-Improved Tunicate Swarm... 准确预测电力系统短期负荷有助于灵活规划系统资源、合理安排机组工作调度以及提高系统运行效率。针对负荷预测精度问题,文中提出了一种基于CEEMD-ITSA-BiLSTM(Complete Ensemble Empirical Mode Decomposition-Improved Tunicate Swarm Algorithm-Bidirectional Long Short-Term Memory)的短期负荷预测模型。对时序性负荷数据进行CEEMD分解,得到若干个平稳的IMF(Intrinsic Mode Function),并对每个IMF进行BiLSTM建模预测。为了提高BiLSTM的精度,采用ITSA算法对BiLSTM的隐含层节点数、学习率和训练次数等超参数进行参数寻优,建立CEEMD-ITSA-BiLSTM负荷预测模型。文中以实际负荷数据进行仿真实验,对比了单一BiLSTM和不同算法优化的BiLSTM模型,结果表明CEEMD-ITSA-BiLSTM模型的RMSE(Root Mean Square Error)、MAE(Mean Absolute Error)和MAPE(Mean Absolute Percentage Error)误差指标相比于BiLSTM模型分别提高了48.54%、51.32%和44.78%,显著低于其他对比模型。 展开更多
关键词 短期负荷预测 预测精度 完全集成经验模态分解 本征模函数 被囊群算法 参数寻优 双向长短期记忆神经网络 误差指标
在线阅读 下载PDF
基于CNN-BiLSTM混合神经网络的雷达信号调制方式识别 被引量:3
13
作者 房崇鑫 盛震宇 +1 位作者 夏明 周慧成 《无线电工程》 2024年第6期1440-1445,共6页
针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirec... 针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirectional Long Short-Term Memory,CNN-BiLSTM)混合神经网络模型,主要通过BiLSTM的时序记忆特性深度挖掘雷达信号的时域特征,结合权值共享特性和CNN层捕获雷达信号的时频特征,再利用二者信号特征联合完成对雷达信号调制方式的识别。通过对比实验验证,所提方法对若干种雷达信号的识别具有较高的准确度,平均值达到95.349%;优于只使用单一特征的网络和传统算法,具有良好的抗噪声能力。 展开更多
关键词 深度学习 卷积-双向长短时记忆混合神经网络 雷达信号调制识别
在线阅读 下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究
14
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(bilstm) 栈式稀疏自编码器(SSAE)
在线阅读 下载PDF
融合SARIMA与BiLSTM的水利设施形变预测
15
作者 唐帅 杨涛 +2 位作者 皮明 张良 袁自祥 《现代雷达》 CSCD 北大核心 2024年第3期96-103,共8页
水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测... 水利设施形变预测可以有效地判断水利设施的运行状态。水利设施安全监测数据是时间序列数据,既有趋势性又有季节性。为了获得更准确的预测结果,文中提出一种基于季节自回归差分移动平均(SARIMA)模型和双向长短时记忆(BiLSTM)网络的预测模型,以解决无法充分挖掘数据中正向与反向的关联进行预测的问题。该模型采用SARIMA模型预测变形数据中的线性分量,采用BiLSTM模型预测变形数据中的非线性分量,使得模型能够更好地提取历史数据中的非线性关系以及正向与反向关系从而提高预测准确度。结合某水电站4#引水涵洞监测数据,使用SARIMA-BiLSTM模型对裂缝计开合度时间序列进行了预测,并与反向传播神经网络模型、SARIMA模型和SARIMA-LSTM模型的预测结果进行对比,比对结果证明所提方法有效地提高了预测精度。 展开更多
关键词 水利设施监测 时间序列预测 趋势性 季节自回归差分移动平均模型 双向长短期记忆网络
在线阅读 下载PDF
基于SSA-CNN-BiLSTM组合模型的短时交通流量预测 被引量:1
16
作者 陆由付 孔维麟 +2 位作者 田垚 王庆斌 牟振华 《交通运输研究》 2024年第1期18-27,共10页
为改善城市道路交通拥堵状况,并为智能交通系统决策提供辅助手段,针对短时交通流的非线性和时序性特点,构建了一种基于麻雀搜索算法(SSA)优化的卷积神经网络(CNN)联合双向长短时记忆神经网络(BiLSTM)的组合模型以预测短时交通流量。首先... 为改善城市道路交通拥堵状况,并为智能交通系统决策提供辅助手段,针对短时交通流的非线性和时序性特点,构建了一种基于麻雀搜索算法(SSA)优化的卷积神经网络(CNN)联合双向长短时记忆神经网络(BiLSTM)的组合模型以预测短时交通流量。首先,对原始交通流数据进行异常值清洗、小波阈值去噪和归一化处理。然后,利用SSA算法对CNN与BiLSTM组合网络中的隐藏层单元数、初始学习率和L2正则化系数三个超参数迭代寻优。最后,将搜索得到的最优超参数组合输入搭建好的组合网络中进行训练和预测。实验结果显示:与粒子群优化(PSO)和灰狼优化(GWO)算法相比,SSA算法在网络超参数寻优过程中的收敛速度更快,全局寻优能力更强;与3种对比模型(CNNBiLSTM、BiLSTM和LSTM)相比,在5 min时间尺度划分下,SSA-CNN-BiLSTM组合模型的均方根误差(RMSE)分别降低了5.46、12.78、20.38,平均绝对百分比误差(MAPE)分别降低了0.49%、2.24%、3.11%;在15 min时间尺度划分下,SSA-CNN-BiLSTM组合模型的RMSE分别降低了9.70、28.42、41.18,MAPE分别降低了0.50%、1.98%、2.59%。研究表明,相比既有算法,该短时交通流量预测组合模型在精度和稳定性上都有所提升,可通过提供更精准的短时交通出行信息来改善道路交通状况。 展开更多
关键词 智能交通 交通流预测 卷积神经网络 城市道路 麻雀搜索算法 双向长短时记忆神经网络
在线阅读 下载PDF
基于BiLSTM和多头注意力机制的超短期电力负荷预测
17
作者 程熙晔 马旭恒 +1 位作者 杨帆 赵赟 《农村电气化》 2024年第12期41-45,共5页
超短期电力负荷预测通过对未来数十分钟到数小时的电力负荷进行准确预测,帮助电力系统实现合理调度和优化运行,确保电力供应与需求平衡。这对于提高电网运行效率、降低成本、减少能源浪费具有重要意义。然而面对非线性较强、变化速度较... 超短期电力负荷预测通过对未来数十分钟到数小时的电力负荷进行准确预测,帮助电力系统实现合理调度和优化运行,确保电力供应与需求平衡。这对于提高电网运行效率、降低成本、减少能源浪费具有重要意义。然而面对非线性较强、变化速度较快的超短期电力负荷时,传统的预测方法精度相对较低。为此,文章提出一种基于BiLSTM和多头注意力机制的神经网络模型的超短期电力负荷预测方法。采用某地区的电力负荷公开数据集验证了模型的精确性和鲁棒性。通过与传统的LSTM和BiLSTM模型的性能对比,证明了文章所提出的网络模型在超短期电力负荷预测中的优越性。 展开更多
关键词 超短期电力负荷预测 bilstm网络 多头注意力机制 预测效果
在线阅读 下载PDF
基于时空网络的电动汽车充电桩电能表误差估计方法研究
18
作者 戴煊丁 何雨辰 +4 位作者 钱丽娟 张煌辉 邵海明 刘国强 林强 《计量学报》 北大核心 2025年第1期126-132,共7页
智能电表的性能通常会随时间下降,现场检定需要大量人力物力,因此提出了一种基于高速卷积神经网络和双向长短期记忆网络相结合的误差估计方法。首先,针对智能电表采集到的充电设施的数据特性进行预处理,其次基于加入高速网络的卷积模块... 智能电表的性能通常会随时间下降,现场检定需要大量人力物力,因此提出了一种基于高速卷积神经网络和双向长短期记忆网络相结合的误差估计方法。首先,针对智能电表采集到的充电设施的数据特性进行预处理,其次基于加入高速网络的卷积模块提取变量间的空间特征,保留一部分原始信息,再将提取的特征输入双向长短期记忆网络中捕捉时序特征,得到更精确的相对误差。最后在某地的新能源汽车充电站的数据集中进行验证,对比现有的先进模型,实验结果表明文中所提方法在充电桩电能表相对误差估计方面有更高的准确性,设计的三种性能评价指标至少有13.68%以上的提升。 展开更多
关键词 电学计量 智能电表 高速网络 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于ERNIE-BiLSTM的社交网络文本情感分析 被引量:6
19
作者 杨文阳 孔科迪 《中国电子科学研究院学报》 北大核心 2023年第4期321-327,共7页
社交网络文本情感分析任务中,因短文本信息模糊等特点,传统的词向量模型无法更好地表示词的语义特征,当前短文本情感分类任务多以二分类研究为主,将结果分类为积极情感与消极情感,未能对分类结果更细入的划分。文中提出一种舆情情感分析... 社交网络文本情感分析任务中,因短文本信息模糊等特点,传统的词向量模型无法更好地表示词的语义特征,当前短文本情感分类任务多以二分类研究为主,将结果分类为积极情感与消极情感,未能对分类结果更细入的划分。文中提出一种舆情情感分析的ERNIE-BiLSTM方法,实现了对用户评论情感的七种情绪分类,包括恐惧、厌恶、乐观、惊喜、感恩、悲伤和愤怒。ERNIE-BiLSTM方法利用ERNIE预训练模型获取文本的语义信息,结合BiLSTM提取文本的双向特征,最后使用softmax函数获得最终的情感分类结果。实验结果表明,ERNIE-BiLSTM方法具有87.7%的精确率、86.9%的召回率和86.8%的F1得分,比其他方法得到了有效提升。 展开更多
关键词 情感分析 ERNIE bilstm 社交网络文本 深度学习
在线阅读 下载PDF
基于EMD-BiLSTM的太平洋大眼金枪鱼渔场预报模型研究 被引量:6
20
作者 袁红春 张永 张天蛟 《渔业现代化》 CSCD 2021年第1期87-96,共10页
大眼金枪鱼(Thunnus obesus)是太平洋延绳钓的主捕鱼种之一,针对多数传统预报模型存在的问题,提出了基于经验模态分解和双向长短时记忆神经网络(EMD-BiLSTM)的渔场预报新模型,以实现一种新的面向渔业应用的产量预报方法。首先,通过经验... 大眼金枪鱼(Thunnus obesus)是太平洋延绳钓的主捕鱼种之一,针对多数传统预报模型存在的问题,提出了基于经验模态分解和双向长短时记忆神经网络(EMD-BiLSTM)的渔场预报新模型,以实现一种新的面向渔业应用的产量预报方法。首先,通过经验模态分解机制(EMD)对单位捕捞努力量渔获量(CPUE)序列进行分解,得到不同尺度的分解分量(IMF);然后结合各影响因子对IMF分量分别建立双向长短时记忆神经网络渔场预报模型(Bi-LSTM),使神经网络的数据处理优势得以充分发挥;最后整合各项结果作为最终预报值。结果显示:与Bi-LSTM模型相比,均方根误差和绝对误差分别降低0.053和0.018;与BP模型相比,均方根误差和绝对误差分别降低0.208和0.048。研究表明,EMD-BiLSTM模型具有较高的预报准确率,可为渔场预报相关研究提供一种新思路。 展开更多
关键词 渔场预报 EMD-bilstm 神经网络 分解分量 大眼金枪鱼
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部