合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影...合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影响,将热负荷历史值和一次网供水温度、供水流量、供水压力、外界天气温度组成CNN-BiLSTM网络的输入,利用CNN-BiLSTM网络提取输入数据的空间特征和时间特征。同时,通过Circle混沌映射、螺旋波动搜索、自适应t变异策略改进GJO,得到的IGJO有效解决了GJO全局搜索能力弱和收敛精度不高的问题,具有高效的寻优效果,然后利用IGJO寻优CNN-BiLSTM网络的超参数,解决了因CNN-BiLSTM网络的超参数选取不当而影响热负荷预测结果的问题。最后利用吉林延边某换热站2021年1月到3月供热负荷数据进行模型测试。结果表明,所提IGJO-CNN-BiLSTM预测结果的MAE、MAPE、RMSE和NSE分别为0.005 MW、0.33%、0.008 MW和0.97,相比LSTM、CNN-LSTM等模型,具有更优的预测精度。展开更多
热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional lon...热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)混合的热误差预测模型。首先,采用热成像仪获取机床主轴区域的温度场信息;其次,利用DBSCAN聚类(density-based spatial clustering of applications with noise)算法和相关系数法筛选出温度敏感点;然后,通过模拟灰狼群体捕食行为,在参数空间中进行搜索以找到BiLSTM所需的最优参数;最后,使用获得的机床温度敏感点和热位移数据进行热误差预测,并在试验机床上进行验证。实验结果表明,使用GWOA优化BiLSTM神经网络的预测模型相比BiLSTM神经网络预测模型的均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别减小了约0.5180、0.3823μm,决定系数R^(2)提升了0.0578。与BiLSTM神经网络模型相比,利用GWOA优化后的模型具有更加优良的预测性能。展开更多
科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜...科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。展开更多
文摘热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)混合的热误差预测模型。首先,采用热成像仪获取机床主轴区域的温度场信息;其次,利用DBSCAN聚类(density-based spatial clustering of applications with noise)算法和相关系数法筛选出温度敏感点;然后,通过模拟灰狼群体捕食行为,在参数空间中进行搜索以找到BiLSTM所需的最优参数;最后,使用获得的机床温度敏感点和热位移数据进行热误差预测,并在试验机床上进行验证。实验结果表明,使用GWOA优化BiLSTM神经网络的预测模型相比BiLSTM神经网络预测模型的均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别减小了约0.5180、0.3823μm,决定系数R^(2)提升了0.0578。与BiLSTM神经网络模型相比,利用GWOA优化后的模型具有更加优良的预测性能。
文摘科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。