期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
基于CNN-BiLSTM-Attention的重力坝稳定时变安全系数预测模型
1
作者 曹宇鑫 张瀚 +1 位作者 尹金超 李亚楠 《人民珠江》 2025年第4期1-8,共8页
在高水压和高渗压等复杂工况作用下,准确把握重力坝安全系数的时变规律并进行有效预测,对于大坝运行状态的科学管控至关重要。为此,基于深度学习理论的CNN-BiLSTM-Attention方法,提出以上游水位、坝顶顺河向位移、时效为自变量,抗滑稳... 在高水压和高渗压等复杂工况作用下,准确把握重力坝安全系数的时变规律并进行有效预测,对于大坝运行状态的科学管控至关重要。为此,基于深度学习理论的CNN-BiLSTM-Attention方法,提出以上游水位、坝顶顺河向位移、时效为自变量,抗滑稳定系数为因变量的耦联预测模型。通过对某坝高148.0 m的重力坝工程分析,模型的拟合平均绝对误差(Mean Absolute Error,MAE)和均方误差(Root Mean Square Error,RMSE)为1.12×10-3和1.66×10-3,预测误差MAE、RMSE分别为3.08×10-3和3.53×10-3,与传统统计回归方法相比,预测精度提高了51.80%和45.44%,与SVM(Support Vector Machine)算法相比,预测精度提高了16.08%和10.18%,显示出对有限元计算结果曲线更好的吻合度,预测精度优势也较为明显。 展开更多
关键词 CNN-bilstm-attention 重力坝 预警指标 预测模型
在线阅读 下载PDF
基于模糊逻辑的FBiLSTM-Attention短期负荷预测
2
作者 张岩 康泽鹏 +2 位作者 高晓芝 杨楠 王昭雷 《河北科技大学学报》 北大核心 2025年第1期41-48,共8页
针对电力负荷数据由于受多种因素的影响具有高度不确定性的问题,将负荷数据的不确定性与深度学习算法相结合,提出了一种基于模糊逻辑的FBiLSTM-Attention短期负荷预测模型,以提高负荷预测的精度。首先,对原始数据进行数据预处理,包括缺... 针对电力负荷数据由于受多种因素的影响具有高度不确定性的问题,将负荷数据的不确定性与深度学习算法相结合,提出了一种基于模糊逻辑的FBiLSTM-Attention短期负荷预测模型,以提高负荷预测的精度。首先,对原始数据进行数据预处理,包括缺失值填充、相关性分析及数据归一化;其次,通过K-Means聚类将每个特征的数据转换成模糊规则引入模糊逻辑的处理,同时,模型结构方面采用双向长短期记忆网络(BiLSTM)和注意力机制(Attention);最后,对所提方法和传统的LSTM与BiLSTM-Attention模型的预测结果进行对比。结果表明,结合了模糊逻辑的模型精确度和鲁棒性都有了明显的提升,具有更好的预测性能。所提模型可以有效提高处理不确定性数据的能力,为负荷预测研究提供了参考。 展开更多
关键词 数据处理 模糊逻辑 负荷预测 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于GA-VMD与CNN-BiLSTM-Attention模型的区域碳排放交易价格预测研究 被引量:2
3
作者 吴丽丽 邰庆瑞 +1 位作者 卞洋 李言辉 《运筹与管理》 CSSCI CSCD 北大核心 2024年第9期134-139,共6页
准确的碳价预测可为碳排放权交易市场监管者和投资者提供决策依据与参考。本文提出了基于GA-VMD降噪分解及CNN-BiLSTM-Attention混合模型的碳价预测方法,并选取湖北碳市场2014年4月2日到2022年6月15日1857个交易日的数据进行分析:首先... 准确的碳价预测可为碳排放权交易市场监管者和投资者提供决策依据与参考。本文提出了基于GA-VMD降噪分解及CNN-BiLSTM-Attention混合模型的碳价预测方法,并选取湖北碳市场2014年4月2日到2022年6月15日1857个交易日的数据进行分析:首先通过遗传算法改进变分模态分解(GA-VMD)将原始碳价序列分解为平稳的本征模态函数(IMF)分量,降低数据噪音;随后构建CNN-BiLSTM-Attention混合模型对各IMF分量进行预测。其中,卷积神经网络(CNN)可提取影响碳价多个特征,双向长短期记忆网络(BiLSTM)可实现时间序列信息提取,注意力机制(Attention)可突出某个关键输入对输出的影响。本文将预测出的各IMF分量集合成碳价序列,并提出12个模型,分为3个组进行剥离分析,结果显示GA-VMD-CNN-BiLSTM-Attention的预测结果最好。另外,为给市场参与者提供更多信息,本文在确定性预测的基础上加入区间预测,以便提前测量碳市场的波动性。 展开更多
关键词 碳价预测 深度学习 变分模态分解 bilstm 注意力机制
在线阅读 下载PDF
基于Attention-BiLSTM混合模型的月尺度降水量预测 被引量:1
4
作者 成玉祥 肖丽英 +2 位作者 王萍根 刘祥周 章晨晖 《人民珠江》 2024年第6期73-81,共9页
降水受到多种气象因素的影响,从而导致降水预测精度不高。针对这个问题,在考虑影响降水的多个气象因素基础上,通过Attention机制赋予各种气象因素不同的权重,结合双向长短期记忆神经网络(BiLSTM),提出了改进的Attention-BiLSTM混合模型... 降水受到多种气象因素的影响,从而导致降水预测精度不高。针对这个问题,在考虑影响降水的多个气象因素基础上,通过Attention机制赋予各种气象因素不同的权重,结合双向长短期记忆神经网络(BiLSTM),提出了改进的Attention-BiLSTM混合模型去实现月尺度降水量的预测。以江西省南昌气象站为例,将1989—2018年的逐月降水量与逐月气象因素(气温、蒸发量、气压等)观测资料作为模型输入数据,通过Attention机制识别出各种气象因素的权重,从而提高BiLSTM模型对降水量的预测性能。结果表明:Attention-BiLSTM混合模型可有效地提高降水量预测的精度;通过Attention机制的修正,显著地改善了原有的BiLSTM模型降水量预测值偏低的问题。 展开更多
关键词 月尺度降水 气象因子 attention机制 bilstm 预测性能
在线阅读 下载PDF
基于TimeGAN和CNN-BiLSTM-Attention的大坝变形预测混合模型
5
作者 原佳帆 李丹杨 +2 位作者 李佳霖 秦学 毛鹏 《人民黄河》 CAS 北大核心 2024年第12期127-130,143,共5页
基于历史数据的深度学习模型往往需要跨越数年的大量数据集,为了解决数据不足问题,提出一种将时间序列生成对抗性网络(TimeGAN)与CNN-BiLSTM-Attention相结合的混凝土面板堆石坝变形预测混合模型。首先,利用TimeGAN生成虚拟数据来扩展... 基于历史数据的深度学习模型往往需要跨越数年的大量数据集,为了解决数据不足问题,提出一种将时间序列生成对抗性网络(TimeGAN)与CNN-BiLSTM-Attention相结合的混凝土面板堆石坝变形预测混合模型。首先,利用TimeGAN生成虚拟数据来扩展稀疏的数据集;然后,利用卷积神经网络(CNN)提取大坝传感器数据中的非线性局部特征,运用BiLSTM捕获双向时间序列特征;最后,引入注意力(Attention)机制对BiLSTM层提取的信息特征自动进行权重分配,通过全连接层输出最终预测结果。以贵州省毕节市某混凝土面板堆石坝为例,验证该混合模型的适用性。建立长短期记忆网络(LSTM)、CNN-LSTM、CNN-LSTM-Attention、CNN-BiLSTM-Attention 4种基模型,再分别引入TimeGAN,对比各模型的预测精度。结果表明:基于TimeGAN和CNN-BiLSTM-Attention的混合模型的拟合效果明显优于其他模型,其预测值与监测值最接近。相较于传统单一LSTM模型,混合模型的EMS、ERMS、EMA分别降低了71%、49%、45%,R2提升了20%。 展开更多
关键词 TimeGAN CNN bilstm attention 混凝土面板堆石坝 变形预测
在线阅读 下载PDF
基于注意力机制的CNN-BiLSTM过闸流量预测模型
6
作者 何立新 沈正华 +1 位作者 张峥 雷晓辉 《水电能源科学》 北大核心 2025年第5期135-138,共4页
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制... 在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制闸为例,选取其1年时间尺度的实际数据为模型输入,模型首先将输入数据标准化,再利用CNN提取特征信息,经过BiLSTM捕获序列数据中的前后向依赖关系,最后通过注意力机制评估信息的重要程度,对特征参数进行加权处理,实现对过闸流量的预测。结果表明,所建模型相比于传统的BP-NN、SVR、LSTM等预测模型具有更好的预测结果,模型的平均绝对误差、平均绝对百分比误差、均方根误差和决定系数分别为3.682、0.018、4.661、0.983,可为工程实践提供参考。 展开更多
关键词 过闸流量预测 bilstm 注意力机制 神经网络
在线阅读 下载PDF
基于XGBoost-WOA-BiLSTM-Attention的公共建筑暖通空调能耗预测研究 被引量:2
7
作者 于水 罗宇晨 +2 位作者 安瑞 李思尧 陈志杰 《建筑技术》 2024年第17期2071-2075,共5页
为在双碳目标下实现节能减排,降低能源成本,提出一种基于BiLSTM的公共建筑暖通空调能耗预测模型。在BiLSTM模型基础上,使用XGBoost算法对输入特征进行选择,剔除冗余特征,得到最佳模型输入特征;然后利用WOA优化算法对添加了Attention机制... 为在双碳目标下实现节能减排,降低能源成本,提出一种基于BiLSTM的公共建筑暖通空调能耗预测模型。在BiLSTM模型基础上,使用XGBoost算法对输入特征进行选择,剔除冗余特征,得到最佳模型输入特征;然后利用WOA优化算法对添加了Attention机制的BiLSTM模型中的6个超参数进行优化,将得到的最优参数代入BiLSTM-Attention神经网络中进行预测,并与BiLSTM模型、BiLSTM-Attention模型和WOA-BiLSTM-Attention模型进行对比。结果表明,所提出的XGBoost-WOA-BiLSTM-Attention模型的RMSE、MAE、R2分别为0.0106、0.006、0.9991,优于其他模型,且相对于持续模型在均方根误差RMSE上提升了98%,为降低公共建筑暖通空调能耗研究提供了参考。 展开更多
关键词 HVAC能耗 XGBoost WOA优化 attention机制 bilstm
在线阅读 下载PDF
基于BiLSTM-Attention模型的缺血性脑卒中的年卒中风险预测 被引量:1
8
作者 骆轶姝 邵圆圆 陈德华 《东华大学学报(自然科学版)》 CAS 北大核心 2021年第4期62-68,共7页
为实现缺血性脑卒中的年卒中风险的预测,提出一种基于BiLSTM(bi-directional long short-term memory)-Attention的预测模型。采用BiLSTM对患者诊断数据进行特征学习以捕获前向和后向序列数据中的信息;增加Attention机制,对隐藏层中指... 为实现缺血性脑卒中的年卒中风险的预测,提出一种基于BiLSTM(bi-directional long short-term memory)-Attention的预测模型。采用BiLSTM对患者诊断数据进行特征学习以捕获前向和后向序列数据中的信息;增加Attention机制,对隐藏层中指标信息进行权重分配来提高关键信息的有效利用率;数据集构建充分考虑缺血性脑卒中发生的影响因子,选取Logistic统计学分析方法进行确定,并定义一年为脑卒中研究时间周期,以患者当前及回归预测一年后的参数作为预测模型输入指标。试验结果表明,相比较单一模型,时序特征的提取融合Attention机制的BiLSTM模型的方法,在准确度、灵敏度、特异度等临床判断标准下的预测风险的效果较优,准确率达86%,在缺血性脑卒中疾病早筛查、早预防等领域具有良好的应用价值。 展开更多
关键词 缺血性脑卒中 年卒中风险 bilstm attention机制
在线阅读 下载PDF
基于BERT-BiLSTM模型的虚假新闻检测
9
作者 张敏超 蒲秋梅 黄方俐 《中国电子科学研究院学报》 2025年第1期33-40,共8页
随着互联网的快速发展,虚假新闻的传播成为全球性问题,严重影响社会稳定和信息安全,因此,如何有效识别虚假新闻已成为自然语言处理领域的研究重点之一。文中提出了一种基于BERT的虚假新闻检测模型。该模型首先通过对预训练的BERT模型进... 随着互联网的快速发展,虚假新闻的传播成为全球性问题,严重影响社会稳定和信息安全,因此,如何有效识别虚假新闻已成为自然语言处理领域的研究重点之一。文中提出了一种基于BERT的虚假新闻检测模型。该模型首先通过对预训练的BERT模型进行微调,以获取新闻文本的深层语义表示;然后,在其顶部分别添加BiLSTM层和卷积神经网络(Convolutional Neural Networks,CNN)层,以捕捉文本的长程依赖关系和局部上下文特征;最后,通过Softmax层实现虚假新闻的分类。实验在新闻文本数据集上进行,结果显示,BERT-BiLSTM模型在英文数据集上的准确率达到96.14%,在中文数据集上的准确率达到97.32%。相比其他模型,BERT-BiLSTM在虚假新闻检测中表现更为优异,具有良好的实际应用价值,对维护网络信息安全具有重要意义。 展开更多
关键词 BERT模型 bilstm模型 虚假新闻检测 深度学习
在线阅读 下载PDF
基于贝叶斯优化BERT-BiLSTM模型的攻击性语言识别与分类方法
10
作者 刘雪明 杜之波 《成都信息工程大学学报》 2025年第3期294-299,共6页
当前基于BERT模型的攻击性语言的识别与分类方法中存在特征稀疏和上下文关联性少的问题,影响攻击性语言识别与分类的准确性,并且在参数优化方面存在人工优化费时费力、成本高、效果差等问题。为此,提出一种基于BERT-BiLSTM模型的攻击语... 当前基于BERT模型的攻击性语言的识别与分类方法中存在特征稀疏和上下文关联性少的问题,影响攻击性语言识别与分类的准确性,并且在参数优化方面存在人工优化费时费力、成本高、效果差等问题。为此,提出一种基于BERT-BiLSTM模型的攻击语言识别方法,并利用基于概率寻优的贝叶斯优化方法解决超参数优化问题。首先通过BERT模型训练攻击性语言数据集并提取数据集中的攻击性词特征,之后再使用BiLSTM模型捕获深层次的上下文关联性,最后将获得的特征向量输入到回归模型中进行分类。经过对CLODataset中文数据集的测试,并将BERT模型和BiLSTM模型进行对比实验,证明该方法有效地捕获序列特征和上下文信息,从而提升文本分类性能,使模型在测试集上的F1值提升了0.11。 展开更多
关键词 BERT模型 bilstm模型 贝叶斯优化
在线阅读 下载PDF
基于BiLSTM+Attention模型的煤矿事故隐患自动分类研究 被引量:3
11
作者 赵法森 刘飞翔 +1 位作者 李泽荃 李靖 《煤炭科学技术》 CAS CSCD 北大核心 2022年第S02期210-217,共8页
煤矿事故隐患排查是“三位一体”安全生产标准化体系建设的重要基础,大部分企业已经建立并利用安全生产信息系统开展隐患排查治理工作,但相关事故隐患数据并未得到充分利用。以新版《煤矿安全规程》为类别划分标准,构建了17个隐患大类和... 煤矿事故隐患排查是“三位一体”安全生产标准化体系建设的重要基础,大部分企业已经建立并利用安全生产信息系统开展隐患排查治理工作,但相关事故隐患数据并未得到充分利用。以新版《煤矿安全规程》为类别划分标准,构建了17个隐患大类和109个隐患小类的分类体系,作为煤矿安全隐患数据的样本标签;利用BiLSTM模型结合Attention机制对煤矿事故隐患数据进行了双层类别体系的文本分类,并以BERT模型作为基线进行了对比研究。计算结果表明:在隐患大类分类试验中,对于整体的分类结果,BiLSTM+Attention模型在准确率、精准率、召回率和F_(1)值上均高于BERT模型2个百分点;对于各隐患类别的分类结果,以F_(1)值作为主要衡量标准,BiLSTM+Attention模型的分类性能最高达到91%,普遍高于BERT模型1%至4%不等。在隐患小类分类试验中,BiLSTM+Attention模型的分类性能最高达到99%,同样普遍高于BERT模型1%到10%不等。可以看出,基于BiLSTM+Attention模型的煤矿事故隐患分类算法具有显著的分类效果,可以为煤矿事故隐患排查相关信息系统提供快速录入的便捷性应用。 展开更多
关键词 bilstm+attention模型 自然语言处理 煤矿事故隐患 文本分类
在线阅读 下载PDF
地铁短时客流预测的ATT-BiLSTM模型
12
作者 戚耀 王晨菡 +1 位作者 吴啸宇 王涛 《交通科技与经济》 2025年第1期89-96,共8页
为适应轨道交通客流变化规律,以提高地铁短时客流预测结果的准确度,且兼顾轨道交通客流变化的周期性和潮汐性,提出一种基于注意力机制的双向长短时记忆神经网络(BiLSTM)短时客流预测模型。首先,将处理后的地铁进出站客流数据以不同时间... 为适应轨道交通客流变化规律,以提高地铁短时客流预测结果的准确度,且兼顾轨道交通客流变化的周期性和潮汐性,提出一种基于注意力机制的双向长短时记忆神经网络(BiLSTM)短时客流预测模型。首先,将处理后的地铁进出站客流数据以不同时间粒度和节日类型作为预测因素,输入到模型中;其次,通过BiLSTM充分挖掘时间序列的全局特征进行初步预测;最后,再通过注意力机制对不同时间点的显著特征加权得出预测结果,提高模型的预测性能。以上海地铁四号线海伦路站的真实客流数据为对象,进行不同模型的对比实验,并通过4种评价指标(MAE、MAPE、RMSE、R^(2)),评价改进前后的模型客流预测准确性。实验结果表明,在评估指标上,文中提出的ATT-BiLSTM模型要优于单种神经网络预测模型。 展开更多
关键词 城市轨道交通 短时客流预测 双向长短时记忆神经网络 注意力机制 机器学习
在线阅读 下载PDF
基于LSTM+Attention模型的区域用电负荷增长预测方法
13
作者 罗晓冬 辜小琢 +4 位作者 方煜 杜萍 陈丽娟 王滢桦 卢海明 《制冷与空调(四川)》 2024年第6期776-781,790,共7页
在制冷、空调系统中,用电量受外界温度、建筑保温及室内人员活动等多种因素影响,形成复杂的用电依赖网络。若仅关注用电负荷增长值而忽视这些依赖关系,将显著增大预测负荷的损失。因此,提出基于LSTM+Attention模型的区域用电负荷增长预... 在制冷、空调系统中,用电量受外界温度、建筑保温及室内人员活动等多种因素影响,形成复杂的用电依赖网络。若仅关注用电负荷增长值而忽视这些依赖关系,将显著增大预测负荷的损失。因此,提出基于LSTM+Attention模型的区域用电负荷增长预测方法。拟合分析区域的历史用电负荷数据,结合用电依赖性残差值的计算,分析用电负荷增长的周期性特征,引入LSTM+Attention模型识别用电负荷的影响因子特征,通过缩放线性回归方程,得到预测区域用电负荷增长值结果。实验结果表明:所提方法应用后得出的预测结果,表现出的预测负荷损失较小,预测准确度较高,满足了区域供电的电力调度决策需求。 展开更多
关键词 区域用电 用电负荷 用电负荷增长 负荷增长预测 LSTM+attention模型 预测方法
在线阅读 下载PDF
基于多层注意力机制与双层BiLSTM结合的民航事件关系抽取模型
14
作者 马婷 张潇峰 《佳木斯大学学报(自然科学版)》 CAS 2024年第11期114-117,共4页
弥补民航事件关系抽取研究不足,提出对注意力机制和BiLSTM结合的关系抽取模型应用到民航领域中。首先选取民航应急事件的语料文本,对选取的语料数据进行清理,将语料库中包含的词语进行矢量化生成向量,合并并连接词语属性、实体位置等,... 弥补民航事件关系抽取研究不足,提出对注意力机制和BiLSTM结合的关系抽取模型应用到民航领域中。首先选取民航应急事件的语料文本,对选取的语料数据进行清理,将语料库中包含的词语进行矢量化生成向量,合并并连接词语属性、实体位置等,在双层BiLSTM模型中引入,以获取关系的更高层次描述;其次,词和句子级注意力机制捕获各个单词的关键性,并借助语义信息降低噪声的关联;最后,进行softmax分类得到提取结果。实验数据表明,此方法应用在民航应急数据集中,F值达到79.3%。 展开更多
关键词 民航突发事件 注意力机制 bilstm 关系抽取
在线阅读 下载PDF
基于LCD-SSA-BiLSTM模型的月径流预测研究 被引量:2
15
作者 任智晶 赵雪花 +1 位作者 郭秋岑 付兴涛 《水电能源科学》 北大核心 2024年第4期1-5,共5页
径流预测在水资源优化配置和防汛抗旱方面发挥着重要作用。但径流序列非平稳会导致预测误差及峰值预测误差较大,因此提出了基于局部特征尺度分解(LCD)、麻雀搜索算法(SSA)和双向长短期记忆神经网络(BiLSTM)的组合预测模型(LCD-SSA-BiLST... 径流预测在水资源优化配置和防汛抗旱方面发挥着重要作用。但径流序列非平稳会导致预测误差及峰值预测误差较大,因此提出了基于局部特征尺度分解(LCD)、麻雀搜索算法(SSA)和双向长短期记忆神经网络(BiLSTM)的组合预测模型(LCD-SSA-BiLSTM),以提高非平稳径流序列的预测精度。以汾河上游4个站点(汾河水库站、上静游站、兰村站和寨上站)为研究对象开展月径流序列预测研究,采用纳什效率系数、平均绝对误差、均方根误差、合格率4个评价指标对预测结果进行定量评价。结果表明,LCD-SSA-BiLSTM模型的平均绝对误差为10.346×10^(4)~124.629×10^(4)m^(3),均方根误差为19.416×10^(4)~191.284×10^(4)m^(3),纳什效率系数为0.975~0.988,4个水文站的合格率均在90%及以上,预测精度为甲级,与单一BiLSTM、EMD-BiLSTM、LCD-BiLSTM及EMD-SSA-BiLSTM模型相比预测效果更好,因此LCD-SSA-BiLSTM模型是预测非平稳月径流序列的有效方法。 展开更多
关键词 汾河上游 bilstm模型 LCD 月径流预测
在线阅读 下载PDF
基于改进BiLSTM-CRF模型的网络安全知识图谱构建 被引量:5
16
作者 黄智勇 余雅宁 +2 位作者 林仁明 黄鑫 张凤荔 《现代电子技术》 北大核心 2024年第6期15-21,共7页
针对网络安全领域的图谱构建任务,基于BiLSTM-CRF模型引入了外部网络安全词典来加强网络安全文本的特征,并结合多头注意力机制提取多层特征,最终在网络安全数据集取得了更优异的结果。利用企业内部的日常网络运维数据,设计并构建了一个... 针对网络安全领域的图谱构建任务,基于BiLSTM-CRF模型引入了外部网络安全词典来加强网络安全文本的特征,并结合多头注意力机制提取多层特征,最终在网络安全数据集取得了更优异的结果。利用企业内部的日常网络运维数据,设计并构建了一个面向企业网络安全运维管理的知识图谱,为后续进一步研究基于图谱的企业网络安全智能决策等应用奠定基础。 展开更多
关键词 bilstm-CRF 网络安全 知识图谱 特征提取 企业网络 注意力机制 本体建模 知识抽取
在线阅读 下载PDF
基于优化算法的CNN-BiLSTM-attention的月径流量预测 被引量:10
17
作者 朱豪 胡圆昭 +2 位作者 尹明财 贾慧 张济世 《人民长江》 北大核心 2023年第12期96-104,共9页
为有效提取径流时间序列的信息特征,提高径流预测模型的高维非线性拟合能力和预测性能的稳定性,将卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(attention)相结合,构建了CNN-BiLSTM-attention的径流组合模型。以长江流... 为有效提取径流时间序列的信息特征,提高径流预测模型的高维非线性拟合能力和预测性能的稳定性,将卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(attention)相结合,构建了CNN-BiLSTM-attention的径流组合模型。以长江流域中游汉口站径流量数据进行模拟验证,对比分析BiLSTM,CNN,BiLSTM-attention,CNN-BiLSTM和CNN-BiLSTM-attention 5种径流预测模型模拟月径流的误差特征,利用FA-SSA,GWO和BAO 3种优化算法分别对CNN-BiLSTM-attention组合模型的卷积核个数、BiLSTM隐藏层神经元个数、全连接隐藏层神经元个数、dropout层、批量大小和学习速率6个超参数优化,探究3种优化算法对CNN-BiLSTM-attention月径流预测性能的影响。结果表明:BiLSTM-attention预测误差最大,BiLSTM次之,CNN-BiLSTM-attention组合模型整体预测精度最高;CNN-BiLSTM-attention径流组合模型能有效捕获关键信息和掌握径流时序变化规律,预测径流值与实际值能够较好吻合;FA-SSA优化算法优于GWO和BAO,更能优化CNN-BILSTM-attention的超参数值,并进一步提高该模型的预测精度。 展开更多
关键词 径流量时间序列 卷积神经网络 双向长短期记忆网络 注意力机制 萤火虫改进的麻雀搜索算法
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
18
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(bilstm)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于特征选择与BiLSTM多变量回归预测的磨煤机故障预警研究
19
作者 罗云 李战国 +5 位作者 付陇霞 王道谊 张新中 李耀华 程亮 江霞 《动力工程学报》 北大核心 2025年第5期724-732,共9页
为解决火电设备多参数耦合、渐变性故障诊断困难的问题,提出了一种基于套索(LASSO)回归特征选择与双向长短期记忆(BiLSTM)网络多变量回归预测的故障预警方法。以某1 000 MW机组磨煤机为研究对象,选取磨煤机电流、出口压力、出入口差压... 为解决火电设备多参数耦合、渐变性故障诊断困难的问题,提出了一种基于套索(LASSO)回归特征选择与双向长短期记忆(BiLSTM)网络多变量回归预测的故障预警方法。以某1 000 MW机组磨煤机为研究对象,选取磨煤机电流、出口压力、出入口差压作为表征堵磨故障的特征参数,采用LASSO回归选择特征变量,基于BiLSTM算法建立多变量回归预测模型;根据堵磨时特征参数的变化机理与模型预测值构建堵磨故障指数,最后利用核密度估计方法计算预警阈值,实现了堵磨故障预警。通过实际数据分析表明:磨煤机正常状态时,BiLSTM多变量回归预测模型的平均相对误差为1.13%,相比传统的误差反向传播(BP)神经网络和支持向量机回归(SVR)模型具有更高的精度和预测参数变化趋势的能力;磨煤机异常状态时,相比成熟的多元状态估计技术(MSET)算法模型能更早地发现磨煤机运行的异常状态,实现磨煤机变工况下故障早期预警。 展开更多
关键词 磨煤机 LASSO回归 bilstm多变量回归 预测模型 堵磨 故障指数
在线阅读 下载PDF
基于EA-BiLSTM-SCSO的多步逐小时参考作物蒸腾量预测方法
20
作者 谢伟明 张钟莉莉 +3 位作者 陶建平 曲明山 魏一博 张石锐 《节水灌溉》 北大核心 2025年第3期57-63,70,共8页
在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,... 在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,使用沙猫群算法(SCSO)优化模型超参数,实现逐小时参考作物蒸腾量预测。首先利用SCSO方法对EA-BiLSTM模型进行优化,优化后的算法在70个epoch后收敛,平均R^(2)升至0.750;进而通过特征相关性分析,将模型输入的特征数据由10个减少为历史ET0、太阳辐射、空气温度、空气湿度和最大风速5个。以北京市昌平区的国家精准农业研究示范基地大田种植区ET0预测为例进行了方法验证,在对未来第7小时的预测中,R^(2)从0.619提高到0.644,获得了更好的预测效果;最后通过对模型可解释性分析证实,历史ET0对预测的贡献最高,贡献率达到了0.043,其次是空气湿度和总辐射。与DT(决策树)、Lasso(最小绝对收缩和选择算法)、LMP(多层感知机)、CNN(卷积神经网络)等预测方法的对比结果表明,采用EA-BiLSTM-SCSO的预测结果在MAE和MSE指标上均获得了最低的误差值,在R^(2)指标上,EA-BiLSTM-SCSO模型平均达到0.722较CNN模型提升了12.6%。研究验证了深度学习与特征工程在提高作物参考蒸腾量逐小时预测精度方面的优势。该方法在智慧灌溉中用于估算作物的水分需求,能够实现对未来灌溉的精准预测,从而制定合理的灌溉计划,提高灌溉水利用效率,进行有效的灌溉用水调度。 展开更多
关键词 bilstm 外部注意力机制 沙猫群优化算法 逐小时参考作物蒸腾量预测 模型可解释性
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部