针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故...针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故障特征,得出边界元件对高频信号的阻滞作用;其次,利用经验模态分解(empirical mode decomposition,EMD)对功率进行分解,得到本征模态函数(intrinsic mode function,IMF)分量,将其能量值作为故障特征量训练由卷积神经网络(convolutional neural network,CNN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)组成的CNN-BiGRU网络;然后,采用开普勒优化算法(Kepler optimization algorithm,KOA)和注意力机制(attention mechanism,AM)对CNN-BiGRU网络进行改进,实现MMC-MTDC的故障诊断;最后,在PSCAD/EMTDC中搭建仿真模型。结果表明,该方法不仅可以实现母线故障和线路故障的检测,还可以在满足保护可靠性和速动性的前提下,解决高阻故障保护易拒动的问题。展开更多
在文本分类任务中,双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)被广泛使用,其不仅能提取文本上下文语义信息和长距离依赖关系,还可以避免出现传统RNN中存在的梯度弥散或爆炸问题.然而,BiGRU在捕获文本局部特征方面存...在文本分类任务中,双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)被广泛使用,其不仅能提取文本上下文语义信息和长距离依赖关系,还可以避免出现传统RNN中存在的梯度弥散或爆炸问题.然而,BiGRU在捕获文本局部特征方面存在不足.本文提出一种基于自注意力和双向门控循环单元的文本分类模型(Self-attention and Bidirectional-gated-recurrent Unit based Text Classification,SBUTC),利用自注意力机制关注对分类贡献较大的文本部分,使用含有不同尺寸卷积核的多通道CNN提取不同粒度的文本局部特征;通过含有跳层连接结构的堆叠BiGRU网络提取文本间上下文语义信息和长距离依赖关系;将CNN和BiGRU的输出进行特征融合,训练分类器对不同类型的文本信息进行分类.在ChnSentiCorp数据集和THUCNews_Title数据集上的对比实验结果表明,本文提出的模型在分类准确率和F1值上优于其他对比模型.展开更多
文摘在文本分类任务中,双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)被广泛使用,其不仅能提取文本上下文语义信息和长距离依赖关系,还可以避免出现传统RNN中存在的梯度弥散或爆炸问题.然而,BiGRU在捕获文本局部特征方面存在不足.本文提出一种基于自注意力和双向门控循环单元的文本分类模型(Self-attention and Bidirectional-gated-recurrent Unit based Text Classification,SBUTC),利用自注意力机制关注对分类贡献较大的文本部分,使用含有不同尺寸卷积核的多通道CNN提取不同粒度的文本局部特征;通过含有跳层连接结构的堆叠BiGRU网络提取文本间上下文语义信息和长距离依赖关系;将CNN和BiGRU的输出进行特征融合,训练分类器对不同类型的文本信息进行分类.在ChnSentiCorp数据集和THUCNews_Title数据集上的对比实验结果表明,本文提出的模型在分类准确率和F1值上优于其他对比模型.