A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod...A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWL...Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.展开更多
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
基金supported by the National Natural Science Foundation of China (60873099)
文摘A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61201282)the Science and Technology on Communication Information Security Control Laboratory Foundation(9140C130304120C13064)
文摘Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.