A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carrie...Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.展开更多
To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-...To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.展开更多
OBJECTIVE Danshen injection and Honghua injection,traditional Chinese medicine(TCM)injections,made from the extracts of Salvia miltiorrhiza Bge.and Carthamus tinctorius L.,have a potential to be developed into the use...OBJECTIVE Danshen injection and Honghua injection,traditional Chinese medicine(TCM)injections,made from the extracts of Salvia miltiorrhiza Bge.and Carthamus tinctorius L.,have a potential to be developed into the useful drugs for the.As the common TCM injections,Danshen injection is often combined with Honghua injection to treat cardiovascular disease.The purpose of this study was to investigate the pharmacokinetic parameters of Honghua injection combined with Danshen injection when they were coadministered intravenously in human and rats through the tail vein.METHODS Single and multiple doses of Danshen injection to study Danshen injection on Honghua injection pharmacokinetics parameters and single and multiple doses of Honghua injection to study Honghua injection on Danshen injection pharmacokinetics parameters.The plasma concentrations of hydroxysafflor A(HSYA)and tanshinol and salvianolic acid B were determined by the reliable high-performance liquid chromatography(HPLC)method.The concentrations of HSYA in urine of rats and human were also determined by HPLC method.DAS 2.1.1software was adopted for calculating the pharmacokinetic parameters.RESULTS The simultaneous intravenous Honghua injection and salvia miltiorrhiza injiection significantly altered the pharmacokinetic parameters of both injections when compared with the individual intravenous administration of each injection.The area under the concentration-timecurve(AUC)and maximum plasma concentration(Cmax)of HSYA and tanshinol and salvianolic acid B were significantly increased.The cumulative urine excretion of HSYA in human and rats during 24 h was decreased after two drugs were administered simultaneously by the intravenous.CONCLUSION Honghua injection and Danshen injection interact with each other following simultaneous intravenous and they have a synergistic action.This experiment has identified the pharmacokinetic parameters and provided a rationale for the clinical use of the drug combination.展开更多
OBJECTIVE Shenfu injection(SFI)is an effective treatment of cardiogenic shock,the pathology of the central link was microcirculation disturbance.However,whether the microcirculation status of the early-and mid-stage o...OBJECTIVE Shenfu injection(SFI)is an effective treatment of cardiogenic shock,the pathology of the central link was microcirculation disturbance.However,whether the microcirculation status of the early-and mid-stage of cardiogenic shock has any difference is unclear.This study aimed to observe the effect of SFI on the microcirculatory disturbance in mesentery for early-and mid-stage of cardiogenic shock rat.METHODS The early-and mid-stage model of cardiogenic shock was established by ligating the ending or root of left anterior descending coronary arteries(LADCA).The rats were randomly divided into 9 groups,ie control group,early-stage model group,mid-stage model group,3 early medicated groups and 3 mid medicated groups(the dosage was 1,3.33,10 mL·kg^(-1) SFI for cardiogenic shock rats of early-and mid-stage,respectively).Parameters in mesenteric microcirculation,such as velocity of RBCs in venules,diameters of venules,the count of leukocyte adhesion and vascular permeability which calculated by FITC-dextran leakage were observed through an GeneandiM2 inverted intravital microscope and high-speed video camera system.RESULTS The cardiogenic shock induced by ligating the LADCA resulted in a number of responses in microcirculation,including a significant increase in the counts of adhesive leukocytes,narrowing of the vascular diameter,decrease in the velocity of RBCs and dextran efflux.All of the above parameters for early-stage cardiogenic shock rats were attenuated by the treatment with SFI,especially the dosage of 10 mL·kg^(-1).While SFI had no apparent time-effect on the vascular diameter and vascular permeability in mesentery for mid-stage cardiogenic shock rats.CONCLUSION The microcirculation status of the early-and mid-stage of cardiogenic shock rats were quite different.The efficacy of early treatment with SFI was more obvious than the mid administration,which could provide experimental and theoretical basis for the patients with cardiogenic shock in an earlier time.展开更多
With the rapid development of information and multi me dia technologies, the demand for the optical plastic aspheric elements used in o pto-electronic devices, camera, optical disc and projector lens etc. has been i n...With the rapid development of information and multi me dia technologies, the demand for the optical plastic aspheric elements used in o pto-electronic devices, camera, optical disc and projector lens etc. has been i ncreased rapidly in the recent years. The key technologies of fabrication of asp heric plastic lens are the design and manufacturing moulds, selection of proper injection moulding equipment, and optimization of injection moulding parameters etc. In this paper, the effect of injection pressure, moulding temperature, cool ing time and injection speed on the surface profile of the lenses during injecti on and holding process is investigated. Surface quality of plastic lenses is mea sured by Talysurf Texture Measuring System. The experimental results showed that the injection pressure and moulding temperature are important parameters compar ing to cooling time and injection speed. A bit change of injection pressure or m oulding temperature will affect the property of the surface profile. Either incr easing injection pressure or mould temperature can achieve less shrinkage. Other wise, a lower injection pressure will produce more shrinkage, more air traps and a lower mould temperature results greater warp and higher shrinkage. The dynami c process of injection for optical plastic lenses is simulated by 3D Moldflow pl astic Insight software (MPI). The MPI will help us to optimize injection mouldin g parameters.展开更多
To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-b...To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.展开更多
OBJECTIVE To identify the bioactive anti-angiogenic constitutes targeting tumor endothelial cells(TECs)in Shenmai Injection(SMI).METHEODS For pharmacokinetic(PK)studies,Balb/c mice harboring human colorectal cancer(Lo...OBJECTIVE To identify the bioactive anti-angiogenic constitutes targeting tumor endothelial cells(TECs)in Shenmai Injection(SMI).METHEODS For pharmacokinetic(PK)studies,Balb/c mice harboring human colorectal cancer(LoVo)xenografts were treated with SMI 10 mL·kg^-1 daily for 1 or 8 d.Multidimensional PK profiles of ginsenosides in plasma,subcutaneous tumors,and TECs were investigated.For PD studies,the tumor-bearing mice Intravital multi-photon imaging and CD31 immunofluorescence staining were used to evaluate the number of microves⁃sels and braches.Double staining of CD31 and α-SMA was performed to evaluate pericytes coverage ratios around vessels.ELISA was performed to determine the concentrations of VEGF and FGF in tumor tissues.For synergistic anti-tumor study,the tumor-bearing mice were treated with SMI 10 mL·kg^-1 daily,Rd 5 mg·kg^-1 daily with or without 5-FU 15 mg·kg^-1 every 3 d for 20 d.HPLC-MS/MS was used to determine the concentrations of 5-FU in plasma and tumor tissues.RESULTS SMI decreased the number of microvessels(P<0.05)and vessel branches(P<0.05)and improved vascular pericytes coverage(P<0.05).PK studies showed that the concentrations of protopanaxadiol-type(PPD)ginsenosides(Rb1,Rb2/Rb3,Rc,and Rd)in both,plasma and tumors,were higher than those of protopanaxatriol-type(Rg1 and Re)and oleanane-type(Ro)ginsenosides.Among PPD ginsenosides,Rd exhibited the greatest concentrations in tumors and TECs after repeated injection.In fact,the proportion of Rd in the detectable components of SMI gradually increased in the following order:SMI formula(2.8%),plasma(16.0%),tumor tissues(34.3%),and TECs(40.3%).In vivo bioactivity results showed that Rd 5 mg·kg^-1 daily significantly decreased the number of microvessels(P<0.05)and vessel branches(P<0.05)and increased pericytes coverage(P<0.05)while Rd 0.5 mg·kg^-1 daily,Rb1 and Rg1 had no significant effect on them.Rd 5 mg·kg^-1 suppressed the expression of VEGF and FGF simultaneously.Rd 5 mg·kg^-1 enhanced the antitumor effect of 5-FU via increasing the distribution of 5-FU in tumor tissues(P<0.05)in xenograft mice.CONCLUSION Ginsenoside Rd may be the major bioactive anti-angiogenic constituent targeting TECs after SMI treatment.展开更多
Aviation heavy-fuel spark ignition(SI)piston engines have been paid more and more attention in the area of small aviation.Aviation heavy-fuel refers to aviation kerosene or light diesel fuel,which is safer to use and ...Aviation heavy-fuel spark ignition(SI)piston engines have been paid more and more attention in the area of small aviation.Aviation heavy-fuel refers to aviation kerosene or light diesel fuel,which is safer to use and store compared to gasoline fuel.And diesel fuel is more suitable for small aviation application on land.In this study,numerical simulation was performed to evaluate the possibility of switching from gasoline direct injection spark ignition(DISI)to diesel DISI combustion.Diesel was injected into the cylinder by original DI system and ignited by spark.In the simulation,computational models were calibrated by test data from a DI engine.Based on the calibrated models,furthermore,the behavior of diesel DISI combustion was investigated.The results indicate that diesel DISI combustion is slower compared to gasoline,and the knock tendency of diesel in SI combustion is higher.For a diesel/air mixture with an equivalence ratio of 0.6 to 1.4,higher combustion pressure and faster burning rate occur when the equivalence ratios are 1.2 and 1.0,but the latter has a higher possibility of knock.In summary,the SI combustion of diesel fuel with a rich mixture can achieve better combustion performance in the engine.展开更多
In order to reduce the "trial-mold" risk and cost,numerical simulation method was applied to micro injection molding weld line development investigation. The micro tensile specimen which has the size of 0.1 ...In order to reduce the "trial-mold" risk and cost,numerical simulation method was applied to micro injection molding weld line development investigation. The micro tensile specimen which has the size of 0.1 mm(depth) ×0.4 mm(width) ×12 mm(length) in test area was selected as the objective part,and polypropylene(PP) as the experimental material. Respectively with specific commercial software(Mold Flow) and general computational fluid dynamic(CFD) software(Comsol Multiphysics) ,the simulation experiments for development of weld line in micro injection molding process were executed and the real comparison experiments were also carried out. The results show that during micro injection molding process,the specific commercial software for normal injection molding process is not valid to describe the micro flow process,the shape of flow front in micro cavity flowing which is important in weld line developing study and the contact angle due to surface tension are not able to be simulated. In order to improve the simulation results for micro weld line development,the general CFD software,which is more flexible in user defining function,is applied. The results show better effects in describing micro fluid flow behavior. As a conclusion,as for weld line forming process,the numerical simulation method can give a characteristic analysis results for processing parameters optimizing in micro injection molding process;but for both kinds of softwares quantitative analysis cannot be obtained unless the boundary condition and micro fluid mathematic model are improved in the future.展开更多
It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concen...It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.H...Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.However,with respect to its capacity in expanding macroscopic sweep volume under varying heterogeneities,the related results appear inadequate.In this research,three cores with different heterogeneities were used and flooded by the joint water and CO_(2) WAG,then the effects of heterogeneity on oil recovery were determined.More importantly,the cores after CO_(2) WAG injection were investigated using the nuclear magnetic resonance(NMR)technique for remaining oil distribution research,which could help us to understand the capacity of CO_(2) WAG in enlarging sweep volume at different heterogeneities.The results show that the presence of heterogeneity may largely weaken the effectiveness of water flooding,the more severe the heterogeneity,the worse the water flooding.The WAG injection of CO_(2) performs well in EOR after water flooding for all the cores with different heterogeneities;however,it could barely form a complete or full sweep throughout the low-permeability region,and un-swept bypassed regions remain.The homogeneous core is better developed by the injection of the joint water and CO_(2) WAG than the heterogeneous and fractured cases.展开更多
Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the frac...Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the fracturing effect.Obviously,the propagation process of fracturing fluid along the pipe string is crucial.In this paper,the fluid transient dynamics model in the pipe string was established,considering the boundary conditions of variable injection flow rate and reservoir seepage,and the unsteady friction was also taken into account.The above model was solved by characteristics and finite difference method respectively.Furthermore,the influences of geological parameters and fluid injection schemes on fluctuating pressure were also analyzed.The results show that unstable fluid-injection can cause noticeable fluctuation of fracturing fluid in the pipe string.Simultaneously,there is attenuation during the propagation of pressure fluctuation.The variation frequency of unstable fluid-injection and well depth have significant effects on pressure fluctuation amplitude at the bottom of the well.This research is conducive to understanding the mechanism of unstable fluid-injection hydraulic fracturing and providing guidance for the design of fluid-injection scheme.展开更多
Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field ...Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.展开更多
In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were e...In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were established based on the Hunt method.The material parameters of MgTiO3 such as elastic modulus,Poisson ratio,glass transition temperature,thermal conductivity and specific heat capacity were measured.Based on the fitting curve and the material parameters measured,the cross-WLF viscosity model and P-V-T model required for MgTiO3 ceramic injection molding were optimized.Furthermore,the influence of process parameters on mold filling flow and distribution of parts defects was researched.It was found that the gate position,injection speed and melt temperature have greater influence on mold filling flow and the packing process has an obvious effect on parts’defects.On this basis,the MgTiO3 ceramic parts injection molding experiment verification was carried out.By comparing the experimental results with the simulated results,it is found that the deformation error is within 1.5%and the density error is within 1%.Therefore,this research provided theoretical guidance for the engineering application of MgTiO3 ceramic parts fabricated by injection molding.展开更多
The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel w...The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120MPa and molding temperature of 150℃. Under this process condition, the percentage of distorted compacts is the lowest.展开更多
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金Project(2011BAE22B05)supported by the National Science and Technology Pillar Program during the 12th Five-year Plan of China
文摘Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.
基金National Key Basic Research Special Foundation of China(2015CB057301)
文摘To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.
基金The project supported by 2016-2018 Anhui University Research Platform Innovation Team
文摘OBJECTIVE Danshen injection and Honghua injection,traditional Chinese medicine(TCM)injections,made from the extracts of Salvia miltiorrhiza Bge.and Carthamus tinctorius L.,have a potential to be developed into the useful drugs for the.As the common TCM injections,Danshen injection is often combined with Honghua injection to treat cardiovascular disease.The purpose of this study was to investigate the pharmacokinetic parameters of Honghua injection combined with Danshen injection when they were coadministered intravenously in human and rats through the tail vein.METHODS Single and multiple doses of Danshen injection to study Danshen injection on Honghua injection pharmacokinetics parameters and single and multiple doses of Honghua injection to study Honghua injection on Danshen injection pharmacokinetics parameters.The plasma concentrations of hydroxysafflor A(HSYA)and tanshinol and salvianolic acid B were determined by the reliable high-performance liquid chromatography(HPLC)method.The concentrations of HSYA in urine of rats and human were also determined by HPLC method.DAS 2.1.1software was adopted for calculating the pharmacokinetic parameters.RESULTS The simultaneous intravenous Honghua injection and salvia miltiorrhiza injiection significantly altered the pharmacokinetic parameters of both injections when compared with the individual intravenous administration of each injection.The area under the concentration-timecurve(AUC)and maximum plasma concentration(Cmax)of HSYA and tanshinol and salvianolic acid B were significantly increased.The cumulative urine excretion of HSYA in human and rats during 24 h was decreased after two drugs were administered simultaneously by the intravenous.CONCLUSION Honghua injection and Danshen injection interact with each other following simultaneous intravenous and they have a synergistic action.This experiment has identified the pharmacokinetic parameters and provided a rationale for the clinical use of the drug combination.
基金supported by National Natural Science Foundation(2010CB530603)Science and Technology Development Plan of Lianyungang City(ZD1508)+1 种基金Natural Science Foundation of Jiangxi Province(20151BAB215037)Science and Technology Program of Health Department of Jiangxi Province(2015A039)
文摘OBJECTIVE Shenfu injection(SFI)is an effective treatment of cardiogenic shock,the pathology of the central link was microcirculation disturbance.However,whether the microcirculation status of the early-and mid-stage of cardiogenic shock has any difference is unclear.This study aimed to observe the effect of SFI on the microcirculatory disturbance in mesentery for early-and mid-stage of cardiogenic shock rat.METHODS The early-and mid-stage model of cardiogenic shock was established by ligating the ending or root of left anterior descending coronary arteries(LADCA).The rats were randomly divided into 9 groups,ie control group,early-stage model group,mid-stage model group,3 early medicated groups and 3 mid medicated groups(the dosage was 1,3.33,10 mL·kg^(-1) SFI for cardiogenic shock rats of early-and mid-stage,respectively).Parameters in mesenteric microcirculation,such as velocity of RBCs in venules,diameters of venules,the count of leukocyte adhesion and vascular permeability which calculated by FITC-dextran leakage were observed through an GeneandiM2 inverted intravital microscope and high-speed video camera system.RESULTS The cardiogenic shock induced by ligating the LADCA resulted in a number of responses in microcirculation,including a significant increase in the counts of adhesive leukocytes,narrowing of the vascular diameter,decrease in the velocity of RBCs and dextran efflux.All of the above parameters for early-stage cardiogenic shock rats were attenuated by the treatment with SFI,especially the dosage of 10 mL·kg^(-1).While SFI had no apparent time-effect on the vascular diameter and vascular permeability in mesentery for mid-stage cardiogenic shock rats.CONCLUSION The microcirculation status of the early-and mid-stage of cardiogenic shock rats were quite different.The efficacy of early treatment with SFI was more obvious than the mid administration,which could provide experimental and theoretical basis for the patients with cardiogenic shock in an earlier time.
文摘With the rapid development of information and multi me dia technologies, the demand for the optical plastic aspheric elements used in o pto-electronic devices, camera, optical disc and projector lens etc. has been i ncreased rapidly in the recent years. The key technologies of fabrication of asp heric plastic lens are the design and manufacturing moulds, selection of proper injection moulding equipment, and optimization of injection moulding parameters etc. In this paper, the effect of injection pressure, moulding temperature, cool ing time and injection speed on the surface profile of the lenses during injecti on and holding process is investigated. Surface quality of plastic lenses is mea sured by Talysurf Texture Measuring System. The experimental results showed that the injection pressure and moulding temperature are important parameters compar ing to cooling time and injection speed. A bit change of injection pressure or m oulding temperature will affect the property of the surface profile. Either incr easing injection pressure or mould temperature can achieve less shrinkage. Other wise, a lower injection pressure will produce more shrinkage, more air traps and a lower mould temperature results greater warp and higher shrinkage. The dynami c process of injection for optical plastic lenses is simulated by 3D Moldflow pl astic Insight software (MPI). The MPI will help us to optimize injection mouldin g parameters.
基金Project(2007dfa71250) supported by the International Science and Technology Cooperative Program of ChinaProject(20062250) supported by the Doctor Fund of North China Electric Power University, China
文摘To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.
基金National Nature Science Foundation of China(81773989and 81530098)
文摘OBJECTIVE To identify the bioactive anti-angiogenic constitutes targeting tumor endothelial cells(TECs)in Shenmai Injection(SMI).METHEODS For pharmacokinetic(PK)studies,Balb/c mice harboring human colorectal cancer(LoVo)xenografts were treated with SMI 10 mL·kg^-1 daily for 1 or 8 d.Multidimensional PK profiles of ginsenosides in plasma,subcutaneous tumors,and TECs were investigated.For PD studies,the tumor-bearing mice Intravital multi-photon imaging and CD31 immunofluorescence staining were used to evaluate the number of microves⁃sels and braches.Double staining of CD31 and α-SMA was performed to evaluate pericytes coverage ratios around vessels.ELISA was performed to determine the concentrations of VEGF and FGF in tumor tissues.For synergistic anti-tumor study,the tumor-bearing mice were treated with SMI 10 mL·kg^-1 daily,Rd 5 mg·kg^-1 daily with or without 5-FU 15 mg·kg^-1 every 3 d for 20 d.HPLC-MS/MS was used to determine the concentrations of 5-FU in plasma and tumor tissues.RESULTS SMI decreased the number of microvessels(P<0.05)and vessel branches(P<0.05)and improved vascular pericytes coverage(P<0.05).PK studies showed that the concentrations of protopanaxadiol-type(PPD)ginsenosides(Rb1,Rb2/Rb3,Rc,and Rd)in both,plasma and tumors,were higher than those of protopanaxatriol-type(Rg1 and Re)and oleanane-type(Ro)ginsenosides.Among PPD ginsenosides,Rd exhibited the greatest concentrations in tumors and TECs after repeated injection.In fact,the proportion of Rd in the detectable components of SMI gradually increased in the following order:SMI formula(2.8%),plasma(16.0%),tumor tissues(34.3%),and TECs(40.3%).In vivo bioactivity results showed that Rd 5 mg·kg^-1 daily significantly decreased the number of microvessels(P<0.05)and vessel branches(P<0.05)and increased pericytes coverage(P<0.05)while Rd 0.5 mg·kg^-1 daily,Rb1 and Rg1 had no significant effect on them.Rd 5 mg·kg^-1 suppressed the expression of VEGF and FGF simultaneously.Rd 5 mg·kg^-1 enhanced the antitumor effect of 5-FU via increasing the distribution of 5-FU in tumor tissues(P<0.05)in xenograft mice.CONCLUSION Ginsenoside Rd may be the major bioactive anti-angiogenic constituent targeting TECs after SMI treatment.
基金Project(2018JJ2041)supported by the Science and Technology Project in Hunan Province,ChinaProject(szjj2019-008)supported by the Open Research Subject of Key Laboratory of Fluid and Power Machinery,Ministry of Education,China。
文摘Aviation heavy-fuel spark ignition(SI)piston engines have been paid more and more attention in the area of small aviation.Aviation heavy-fuel refers to aviation kerosene or light diesel fuel,which is safer to use and store compared to gasoline fuel.And diesel fuel is more suitable for small aviation application on land.In this study,numerical simulation was performed to evaluate the possibility of switching from gasoline direct injection spark ignition(DISI)to diesel DISI combustion.Diesel was injected into the cylinder by original DI system and ignited by spark.In the simulation,computational models were calibrated by test data from a DI engine.Based on the calibrated models,furthermore,the behavior of diesel DISI combustion was investigated.The results indicate that diesel DISI combustion is slower compared to gasoline,and the knock tendency of diesel in SI combustion is higher.For a diesel/air mixture with an equivalence ratio of 0.6 to 1.4,higher combustion pressure and faster burning rate occur when the equivalence ratios are 1.2 and 1.0,but the latter has a higher possibility of knock.In summary,the SI combustion of diesel fuel with a rich mixture can achieve better combustion performance in the engine.
基金Project(ZI648/13-1) supported by German Research FoundationProject(D/06/00373) supported by German Academic Exchange Service
文摘In order to reduce the "trial-mold" risk and cost,numerical simulation method was applied to micro injection molding weld line development investigation. The micro tensile specimen which has the size of 0.1 mm(depth) ×0.4 mm(width) ×12 mm(length) in test area was selected as the objective part,and polypropylene(PP) as the experimental material. Respectively with specific commercial software(Mold Flow) and general computational fluid dynamic(CFD) software(Comsol Multiphysics) ,the simulation experiments for development of weld line in micro injection molding process were executed and the real comparison experiments were also carried out. The results show that during micro injection molding process,the specific commercial software for normal injection molding process is not valid to describe the micro flow process,the shape of flow front in micro cavity flowing which is important in weld line developing study and the contact angle due to surface tension are not able to be simulated. In order to improve the simulation results for micro weld line development,the general CFD software,which is more flexible in user defining function,is applied. The results show better effects in describing micro fluid flow behavior. As a conclusion,as for weld line forming process,the numerical simulation method can give a characteristic analysis results for processing parameters optimizing in micro injection molding process;but for both kinds of softwares quantitative analysis cannot be obtained unless the boundary condition and micro fluid mathematic model are improved in the future.
基金Project(51404005)supported by the National Natural Science Foundation of China
文摘It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
基金Project(KFJJ-TZ-2019-3)supported by the Open Project of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs,ChinaProjects(51504275,51974344)supported by the National Natural Science Foundation of China。
文摘Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.However,with respect to its capacity in expanding macroscopic sweep volume under varying heterogeneities,the related results appear inadequate.In this research,three cores with different heterogeneities were used and flooded by the joint water and CO_(2) WAG,then the effects of heterogeneity on oil recovery were determined.More importantly,the cores after CO_(2) WAG injection were investigated using the nuclear magnetic resonance(NMR)technique for remaining oil distribution research,which could help us to understand the capacity of CO_(2) WAG in enlarging sweep volume at different heterogeneities.The results show that the presence of heterogeneity may largely weaken the effectiveness of water flooding,the more severe the heterogeneity,the worse the water flooding.The WAG injection of CO_(2) performs well in EOR after water flooding for all the cores with different heterogeneities;however,it could barely form a complete or full sweep throughout the low-permeability region,and un-swept bypassed regions remain.The homogeneous core is better developed by the injection of the joint water and CO_(2) WAG than the heterogeneous and fractured cases.
基金Project(CXZZBS 2020052)supported by Postgraduate Innovation Fund Projects of Hebei Province,China。
文摘Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the fracturing effect.Obviously,the propagation process of fracturing fluid along the pipe string is crucial.In this paper,the fluid transient dynamics model in the pipe string was established,considering the boundary conditions of variable injection flow rate and reservoir seepage,and the unsteady friction was also taken into account.The above model was solved by characteristics and finite difference method respectively.Furthermore,the influences of geological parameters and fluid injection schemes on fluctuating pressure were also analyzed.The results show that unstable fluid-injection can cause noticeable fluctuation of fracturing fluid in the pipe string.Simultaneously,there is attenuation during the propagation of pressure fluctuation.The variation frequency of unstable fluid-injection and well depth have significant effects on pressure fluctuation amplitude at the bottom of the well.This research is conducive to understanding the mechanism of unstable fluid-injection hydraulic fracturing and providing guidance for the design of fluid-injection scheme.
基金Project(2013CB036003)supported by the National Basic Research,Program of ChinaProject(2010QNA54)Fundamental Research Funds for the Central Universities,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.
基金Project(2018CFB439)supported by the Hubei Province Natural Science Foundation,China。
文摘In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were established based on the Hunt method.The material parameters of MgTiO3 such as elastic modulus,Poisson ratio,glass transition temperature,thermal conductivity and specific heat capacity were measured.Based on the fitting curve and the material parameters measured,the cross-WLF viscosity model and P-V-T model required for MgTiO3 ceramic injection molding were optimized.Furthermore,the influence of process parameters on mold filling flow and distribution of parts defects was researched.It was found that the gate position,injection speed and melt temperature have greater influence on mold filling flow and the packing process has an obvious effect on parts’defects.On this basis,the MgTiO3 ceramic parts injection molding experiment verification was carried out.By comparing the experimental results with the simulated results,it is found that the deformation error is within 1.5%and the density error is within 1%.Therefore,this research provided theoretical guidance for the engineering application of MgTiO3 ceramic parts fabricated by injection molding.
基金Project(2001AA337050) supported by the National High Technology Research and Development Program of China ject(81041) supported by the Huo Yindong Education Foundation project(200135) supported by the Chinese Excellent Dissertation
文摘The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120MPa and molding temperature of 150℃. Under this process condition, the percentage of distorted compacts is the lowest.