In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)wi...In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)with argument 2n+1 and Dirichlet lambda functionλ(s)with argument 2n.In addition,we solve the problem proposed recently by Zhou(2021).展开更多
Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying...Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.展开更多
In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and dedu...In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases.展开更多
In this paper,by deriving an inequality involving the generating function of the Bernoulli numbers,the author introduces a new ratio of finitely many gamma functions,finds complete monotonicity of the second logarithm...In this paper,by deriving an inequality involving the generating function of the Bernoulli numbers,the author introduces a new ratio of finitely many gamma functions,finds complete monotonicity of the second logarithmic derivative of the ratio,and simply reviews the complete monotonicity of several linear combinations of finitely many digamma or trigamma functions.展开更多
文摘In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)with argument 2n+1 and Dirichlet lambda functionλ(s)with argument 2n.In addition,we solve the problem proposed recently by Zhou(2021).
基金Supported by the National Natural Science Foundation of China(51276017)
文摘Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.
基金Supported by the PCSIRT of Education of China(IRT0621)Supported by the Innovation Program of Shanghai Municipal Education Committee of China(08ZZ24)Supported by the Henan Innovation Project for University Prominent Research Talents of China(2007KYCX0021)
文摘In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases.
基金partially supported by the National Nature Science Foundation of China(12061033)。
文摘In this paper,by deriving an inequality involving the generating function of the Bernoulli numbers,the author introduces a new ratio of finitely many gamma functions,finds complete monotonicity of the second logarithmic derivative of the ratio,and simply reviews the complete monotonicity of several linear combinations of finitely many digamma or trigamma functions.