期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Benford模型的自然图像与计算机生成图像的鉴别
被引量:
6
1
作者
张震
杨宇豪
《北京工业大学学报》
CAS
CSCD
北大核心
2013年第6期930-935,共6页
针对目前自然图像和计算机生成图像的鉴别方法鉴定准确率不高的问题,提出了一种基于Benford模型的自然图像与计算机生成图像的鉴别方法.本算法利用DCT域AC系数首位有效数字的Benford曲线分布,分别对图像的RGB三个色彩通道进行统计,以3...
针对目前自然图像和计算机生成图像的鉴别方法鉴定准确率不高的问题,提出了一种基于Benford模型的自然图像与计算机生成图像的鉴别方法.本算法利用DCT域AC系数首位有效数字的Benford曲线分布,分别对图像的RGB三个色彩通道进行统计,以3条概率分布曲线的重合程度作为鉴别取证的依据,对2类图像进行正确分类.实验结果表明,该方法可有效地鉴别自然图像和计算机生成图像,与已有算法相比具有更高的识别率,鉴别准确率达97.17%,且计算量小、易于实现,为图像取证、数字防伪鉴别等提供可靠的依据.
展开更多
关键词
自然图像
计算机生成图像
benford模型
DCT域AC系数
在线阅读
下载PDF
职称材料
题名
基于Benford模型的自然图像与计算机生成图像的鉴别
被引量:
6
1
作者
张震
杨宇豪
机构
郑州大学电气工程学院
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2013年第6期930-935,共6页
基金
河南省重大科技攻关项目(092101210100)
文摘
针对目前自然图像和计算机生成图像的鉴别方法鉴定准确率不高的问题,提出了一种基于Benford模型的自然图像与计算机生成图像的鉴别方法.本算法利用DCT域AC系数首位有效数字的Benford曲线分布,分别对图像的RGB三个色彩通道进行统计,以3条概率分布曲线的重合程度作为鉴别取证的依据,对2类图像进行正确分类.实验结果表明,该方法可有效地鉴别自然图像和计算机生成图像,与已有算法相比具有更高的识别率,鉴别准确率达97.17%,且计算量小、易于实现,为图像取证、数字防伪鉴别等提供可靠的依据.
关键词
自然图像
计算机生成图像
benford模型
DCT域AC系数
Keywords
natural image
computer graphics
benford
model
AC coefficients in DCT domain
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Benford模型的自然图像与计算机生成图像的鉴别
张震
杨宇豪
《北京工业大学学报》
CAS
CSCD
北大核心
2013
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部