为了揭示湖北省植被NPP的时空演变规律及驱动机制,基于CASA模型计算2000—2018年湖北省植被NPP,结合气象数据和土地利用数据,利用重心模型、相关性分析和贡献指数等方法分析植被NPP的时空变化及其影响因素。结果表明:(1)2000—2018年湖...为了揭示湖北省植被NPP的时空演变规律及驱动机制,基于CASA模型计算2000—2018年湖北省植被NPP,结合气象数据和土地利用数据,利用重心模型、相关性分析和贡献指数等方法分析植被NPP的时空变化及其影响因素。结果表明:(1)2000—2018年湖北省植被NPP年均值介于532.19~656.49 g C/(m^(2)·a),整体呈波动上升趋势;(2)湖北省植被NPP在空间分布上表现为由西北向东南递减的趋势,植被NPP重心迁移轨迹呈M型,西北地区的增量和增速较大高于东南地区。(3)湖北省植被NPP与年均气温呈正相关的区域面积占全省总面积的54.49%,主要分布在荆门、荆州地区以及宜昌东南部地区;年均NPP与年降水量呈正相关的面积高达87.65%,主要分布在随州、襄阳和孝感北部地区。(4)2000—2018年研究区域内NPP总量增加19.86×10^(-2)Tg C,在土地利用变化引起的NPP损益中,主要由其他土地类型向林地、耕地和草地转换引起;不同时期土地覆盖变化对NPP总量的贡献率有所差异,2000—2010年建设用地贡献率最高为53.81%,2010—2018年耕地贡献率最高为61.53%。展开更多
本文利用国家气候中心气候系统模式(Beijing climate center climate System Model,BCC_CSM1.1m)提供的1991—2014年海表温度回报数据,将逐步回归模态投影方法(stepwise Pattern Projection Method,SPPM)应用到改进BCC_CSM1.1m模式El N...本文利用国家气候中心气候系统模式(Beijing climate center climate System Model,BCC_CSM1.1m)提供的1991—2014年海表温度回报数据,将逐步回归模态投影方法(stepwise Pattern Projection Method,SPPM)应用到改进BCC_CSM1.1m模式El Nino和南方涛动(ENSO)预报研究。SPPM是一种经验性模式误差订正方法,其主要思路是在大尺度模式预报因子场中找寻出与格点观测预报变量相关性高的信号,通过投影将这种信号反演出来,然后建立回归方程得到订正后的预报结果。本文交叉检验和滚动独立样本检验的结果表明,利用SPPM可以有效地提高BCC_CSM1.1m气候系统模式的预报技巧,尤其是在热带太平洋地区以及印度洋海区,24年交叉检验Nino3.4指数提前6个月预报的相关系数技巧可以提高8%~10%,预报误差得到显著降低。不同季节SPPM订正效果略有不同,其中对秋季的预报技巧提升最为显著。与此同时,交叉检验结果还显示,SPPM对El Nino中心纬向位置的预报也有一定程度的改进。展开更多
文摘为了揭示湖北省植被NPP的时空演变规律及驱动机制,基于CASA模型计算2000—2018年湖北省植被NPP,结合气象数据和土地利用数据,利用重心模型、相关性分析和贡献指数等方法分析植被NPP的时空变化及其影响因素。结果表明:(1)2000—2018年湖北省植被NPP年均值介于532.19~656.49 g C/(m^(2)·a),整体呈波动上升趋势;(2)湖北省植被NPP在空间分布上表现为由西北向东南递减的趋势,植被NPP重心迁移轨迹呈M型,西北地区的增量和增速较大高于东南地区。(3)湖北省植被NPP与年均气温呈正相关的区域面积占全省总面积的54.49%,主要分布在荆门、荆州地区以及宜昌东南部地区;年均NPP与年降水量呈正相关的面积高达87.65%,主要分布在随州、襄阳和孝感北部地区。(4)2000—2018年研究区域内NPP总量增加19.86×10^(-2)Tg C,在土地利用变化引起的NPP损益中,主要由其他土地类型向林地、耕地和草地转换引起;不同时期土地覆盖变化对NPP总量的贡献率有所差异,2000—2010年建设用地贡献率最高为53.81%,2010—2018年耕地贡献率最高为61.53%。