In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ...In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.展开更多
A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was perfo...A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin lay...The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.展开更多
The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulation...The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulations of the problem.A closed form analytic solution of the beam was obtained by the theorem of residues.We selected a numerical example to illustrate the dynamic response of the beam on Pasternak and Winkler foundations,respectively.We discuss the effect of the moving load velocity on the dynamic displacement response of the beam.The maximum deflection of the beam increases slightly with increased load velocity but increases significantly with reduced shear modulus of subgrade at a given velocity.The maximum deflection of a beam resting on a Pasternak foundation is much smaller than that of a beam on a Winkler foundation.展开更多
Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery,which requires the precise prediction of the acoustic radiation force under various ...Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery,which requires the precise prediction of the acoustic radiation force under various circumstances to improve the system efficiency.The acoustic radiation force exerted by a zero-order quasi-Bessel-Gauss beam on an elastic spherical shell near an impedance boundary is theoretically and numerically studied in this study.By means of the finite series method and the image theory,a zero-order quasi-Bessel-Gauss beam is expanded in terms of spherical harmonic functions,and the exact solution of the acoustic radiation force is derived based on the acoustic scattering theory.The acoustic radiation force function,which represents the radiation force per unit energy density and per unit cross-sectional surface,is especially investigated.Some simulated results for a polymethyl methacrylate shell and an aluminum shell are provided to illustrate the behavior of acoustic radiation force in this case.The simulated results show the oscillatory property and the negative radiation force caused by the impedance boundary.An appropriate relative thickness of the shell can generate sharp peaks for a polymethyl methacrylate shell.Strong radiation force can be obtained at small half-cone angles and the beam waist only affects the results at high frequencies.Considering that the quasi-Bessel-Gauss beam possesses both the energy focusing property and the non-diffracting advantage,this study is expected to be useful in the development of acoustic tweezers,contrast agent micro-shells,and drug delivery applications.展开更多
An ion beam analysis system was established on a 1.7 MV tandem accelerator, enabling Rutherford backscattering(RBS), elastic recoil detection(ERD), nuclear reaction analysis(NRA) and channeling measurements. The syste...An ion beam analysis system was established on a 1.7 MV tandem accelerator, enabling Rutherford backscattering(RBS), elastic recoil detection(ERD), nuclear reaction analysis(NRA) and channeling measurements. The system was tested by performing qualitative and quantitative analysis of Si, Ni/Si, Bi Fe O3:La/Si,Mo C/Mo/Si and Ti BN/Si samples. RBS of a Bi Fe O3:La film was used as system calibration. Tested by ion beam channeling, a Si(100) is of good crystallinity(χmin= 3.01%). For thin film samples, the measured thickness agrees well with simulation results by SIMNRA. In particular, composition of a Mo C/Mo/Si and Ti BN film samples were analyzed by RBS and non-Rutherford elastic backscattering.展开更多
Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is base...Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is based on the nonlocal Euler–Bernoulli beam theory. The eigen value equation is developed for the buckling and vibration analyses. The orthogonal property of these polynomials makes the computation easier with less computational effort. It is observed that the frequency and critical buckling load parameters are dependent on the temperature, elastic medium, small scale coefficient,and length-to-diameter ratio. These observations are useful in the mechanical design of devices that use carbon nanotubes.展开更多
In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global b...In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global bifurcation techniques, we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, when the nonlinear term is non-singular or singular, and allowed to change sign.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.Th...To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.The "backfilling body-immediate roof" cooperative bearing structure of CBCM is analyzed by establishing the model of the medium thick plate on an elastic foundation.The influence of the backfilling rate on the stability of overlying strata is analyzed by the numerical simulation experiment.The control effect of CBCM is verified by a physic similar simulation test.The economic benefit of CBCM is analyzed.The conclusions are:the deformation characteristics of the immediate roof and critical backfilling spacing in CBCM can be analyzed based on the Hu Haichang’s theory.Exerting the bearing capacity of the immediate roof is beneficial to the stability of the overlying strata.The CBCM has a good control effect on the overburden in Xinyang Mine when the backfilling rate is lower than 25%.The backfilling cost of per ton coal is 37.39 yuan/t when the backfilling rate is 13.7%,with a decrease rate of 56.63%than the full-filling.The research results can provide theoretical support for the application of CBCM in coal mining.展开更多
Elastic recoil detection analysis technique with△E-E particle identification and Q3D momentum analysis has been developed to determine high resolution depth profiles in thin foils and multilayer systems.A depth resol...Elastic recoil detection analysis technique with△E-E particle identification and Q3D momentum analysis has been developed to determine high resolution depth profiles in thin foils and multilayer systems.A depth resolution of 1.2nm was achieved at the surface of the samples using a high quality 100 MeV^(127)I beam.The method was applied to depth profile analysis of C/LiF multilayers,superconductor and GaN foil samples.展开更多
Nanowire stiction is a crucial bottleneck for the development of M/NEMS devices.We present a model of a nano-beam stuck to the substrate in consideration of both surface elasticity and residual surface stress.The crit...Nanowire stiction is a crucial bottleneck for the development of M/NEMS devices.We present a model of a nano-beam stuck to the substrate in consideration of both surface elasticity and residual surface stress.The critical detachment length can be derived from the transversality condition using the variational method.The effects of the surface parameters on the adhesion of the nano-beam are discussed in detail.These analyses provide some suggestions for engineers in the design and fabrication of more accurate M/NEMS instruments.展开更多
The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding reso...The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding resonance. Based on the Laplace transform method, the mode shape functions and the frequency equations of the beams in the typical boundary conditions are derived. A cantilever beam with a lumped mass and a spring is selected to obtain its natural frequencies and mode shape functions. An experiment was conducted in order to get the modal parameters of the beam based on the NExT-ERA method. By comparing the analytical and experimental results, the effects of the locations of the mass and spring on the modal parameter are discussed. The variation of the natural frequencies was obtained with the changing stiffness coefficient and mass coefficient, respectively. The findings provide a reference for the vibration analysis methods and the lumped parameters layout design of elastic beams used in engineering.展开更多
The support layer is an important component of twin-block ballastless track. The modulus of the support layer is an important design parameter and must be carefully solved. We studied the bending stress and deformatio...The support layer is an important component of twin-block ballastless track. The modulus of the support layer is an important design parameter and must be carefully solved. We studied the bending stress and deformation of track slab and support layer due to train load using the beam-plate finite element model on elastic foundation. The results show that support layer type has great impact on both support layer deformation and the stress on subgrade, but has little impact on the bending stress of either track slab or support layer. The continuous support layer type, and articulated support layer type with shear transfer device at their ends, are recommended. In order to keep the stress in the support layer less than that in track slab, the modulus of the continuous, unit, and articulated types of support layer ( in unit twin-block ballastless track), and the support layer in continuous twin-block ballastless track, should not be larger than 15, 22, 20.5 and 5 GPa, respectively. In addition, the modulus of the unit-type support layer should not be more than 20 GPa, to ensure the step in support layer remains less than 1 mm.展开更多
Based on study of the influence of main roof fracture on ground pressure, this paper considered the immediate roof as a semi-infinite long beam on a Winkler elastic foundation. In the model the coal seam is the founda...Based on study of the influence of main roof fracture on ground pressure, this paper considered the immediate roof as a semi-infinite long beam on a Winkler elastic foundation. In the model the coal seam is the foundation and the pressure caused by mian roof deflection is the load. Having solved the model and analyzed relevant factors,the authors indicate that the disturbance caused by the breakage of the mian roof can be observed in both gates of longwall face and explain why it can be. The paper points out that the applicability of the method to obtain the disturbance information by measuring the loads on supports is wider than that by measuring the roof convergence rate. The results are useful for monitoring and predicting ground pressure.展开更多
文摘In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.
基金the National Natural Science Foundation of China(Nos.11635015,U1832130,and 11975040)the State Key Laboratory of Software Development Environment(SKLSDE-2020ZX-16)+1 种基金the Continuous Basic Scientific Research Project(No.WDJC-2019-13)the Leading Innovation Project(Nos.LC192209000701 and LC202309000201).
文摘A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
基金funded by Le Quy Don Technical University Research Found (Grant No.2023QHT.03)。
文摘The main goal of this study is to use higher-order isogeometric analysis(IGA)to study the dynamic response of sandwich shells with an auxetic honeycomb core and two different functionally graded materials(FGM)skin layers(namely honeycomb-FGS shells)subjected to dynamic loading.Touratier's non-polynomial higher-order shear deformation theory(HSDT)is used due to its simplicity and performance.The governing equation is derived from Hamilton's principle.After verifying the present approach,the effect of input parameters on the dynamic response of honeycomb-FGS shells is carried out in detail.
文摘The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulations of the problem.A closed form analytic solution of the beam was obtained by the theorem of residues.We selected a numerical example to illustrate the dynamic response of the beam on Pasternak and Winkler foundations,respectively.We discuss the effect of the moving load velocity on the dynamic displacement response of the beam.The maximum deflection of the beam increases slightly with increased load velocity but increases significantly with reduced shear modulus of subgrade at a given velocity.The maximum deflection of a beam resting on a Pasternak foundation is much smaller than that of a beam on a Winkler foundation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.81527901,11604361,and 91630309)。
文摘Shell structures have increasingly widespread applications in biomedical ultrasound fields such as contrast agents and drug delivery,which requires the precise prediction of the acoustic radiation force under various circumstances to improve the system efficiency.The acoustic radiation force exerted by a zero-order quasi-Bessel-Gauss beam on an elastic spherical shell near an impedance boundary is theoretically and numerically studied in this study.By means of the finite series method and the image theory,a zero-order quasi-Bessel-Gauss beam is expanded in terms of spherical harmonic functions,and the exact solution of the acoustic radiation force is derived based on the acoustic scattering theory.The acoustic radiation force function,which represents the radiation force per unit energy density and per unit cross-sectional surface,is especially investigated.Some simulated results for a polymethyl methacrylate shell and an aluminum shell are provided to illustrate the behavior of acoustic radiation force in this case.The simulated results show the oscillatory property and the negative radiation force caused by the impedance boundary.An appropriate relative thickness of the shell can generate sharp peaks for a polymethyl methacrylate shell.Strong radiation force can be obtained at small half-cone angles and the beam waist only affects the results at high frequencies.Considering that the quasi-Bessel-Gauss beam possesses both the energy focusing property and the non-diffracting advantage,this study is expected to be useful in the development of acoustic tweezers,contrast agent micro-shells,and drug delivery applications.
基金Supported by the National Natural Science Foundation of China(No.11405117)the State Key Lab of Advanced Welding and Joining of Harbin Institute of Technology(No.AWJ-M13-03)
文摘An ion beam analysis system was established on a 1.7 MV tandem accelerator, enabling Rutherford backscattering(RBS), elastic recoil detection(ERD), nuclear reaction analysis(NRA) and channeling measurements. The system was tested by performing qualitative and quantitative analysis of Si, Ni/Si, Bi Fe O3:La/Si,Mo C/Mo/Si and Ti BN/Si samples. RBS of a Bi Fe O3:La film was used as system calibration. Tested by ion beam channeling, a Si(100) is of good crystallinity(χmin= 3.01%). For thin film samples, the measured thickness agrees well with simulation results by SIMNRA. In particular, composition of a Mo C/Mo/Si and Ti BN film samples were analyzed by RBS and non-Rutherford elastic backscattering.
文摘Boundary characteristic orthogonal polynomials are used as shape functions in the Rayleigh–Ritz method to investigate vibration and buckling of nanobeams embedded in an elastic medium. The present formulation is based on the nonlocal Euler–Bernoulli beam theory. The eigen value equation is developed for the buckling and vibration analyses. The orthogonal property of these polynomials makes the computation easier with less computational effort. It is observed that the frequency and critical buckling load parameters are dependent on the temperature, elastic medium, small scale coefficient,and length-to-diameter ratio. These observations are useful in the mechanical design of devices that use carbon nanotubes.
基金Supported by the National Natural Science Foundation of China(11501260)Supported by the National Natural Science Foundation of Suqian City(Z201444)
文摘In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global bifurcation techniques, we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, when the nonlinear term is non-singular or singular, and allowed to change sign.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
基金supported by the Youth Funds of National Natural Science Foundation of China(No.52004173)the Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)+2 种基金the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(No.2020L0066)the China Postdoctoral Science Foundation(No.2022M712922)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Nos.2021SX-TD001 and 2022SXTD008).
文摘To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.The "backfilling body-immediate roof" cooperative bearing structure of CBCM is analyzed by establishing the model of the medium thick plate on an elastic foundation.The influence of the backfilling rate on the stability of overlying strata is analyzed by the numerical simulation experiment.The control effect of CBCM is verified by a physic similar simulation test.The economic benefit of CBCM is analyzed.The conclusions are:the deformation characteristics of the immediate roof and critical backfilling spacing in CBCM can be analyzed based on the Hu Haichang’s theory.Exerting the bearing capacity of the immediate roof is beneficial to the stability of the overlying strata.The CBCM has a good control effect on the overburden in Xinyang Mine when the backfilling rate is lower than 25%.The backfilling cost of per ton coal is 37.39 yuan/t when the backfilling rate is 13.7%,with a decrease rate of 56.63%than the full-filling.The research results can provide theoretical support for the application of CBCM in coal mining.
基金Supported by the National Natural Science Foundation of China under Grant NO.19775067the Nuclear Industry Science Foundation of China undet Grant No.H7196A0113.
文摘Elastic recoil detection analysis technique with△E-E particle identification and Q3D momentum analysis has been developed to determine high resolution depth profiles in thin foils and multilayer systems.A depth resolution of 1.2nm was achieved at the surface of the samples using a high quality 100 MeV^(127)I beam.The method was applied to depth profile analysis of C/LiF multilayers,superconductor and GaN foil samples.
基金by the National Natural Science Foundation of China under Grant Nos 10802099 and 11102140the Doctoral Fund of Ministry of Education of China(No 200804251520)+1 种基金the Natural Science Foundation of Shandong Province(No ZR2009AQ006)the Brain Korea Scholarship from Seoul National University。
文摘Nanowire stiction is a crucial bottleneck for the development of M/NEMS devices.We present a model of a nano-beam stuck to the substrate in consideration of both surface elasticity and residual surface stress.The critical detachment length can be derived from the transversality condition using the variational method.The effects of the surface parameters on the adhesion of the nano-beam are discussed in detail.These analyses provide some suggestions for engineers in the design and fabrication of more accurate M/NEMS instruments.
基金Supported by the National Natural Science Foundation of China(51109034)
文摘The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding resonance. Based on the Laplace transform method, the mode shape functions and the frequency equations of the beams in the typical boundary conditions are derived. A cantilever beam with a lumped mass and a spring is selected to obtain its natural frequencies and mode shape functions. An experiment was conducted in order to get the modal parameters of the beam based on the NExT-ERA method. By comparing the analytical and experimental results, the effects of the locations of the mass and spring on the modal parameter are discussed. The variation of the natural frequencies was obtained with the changing stiffness coefficient and mass coefficient, respectively. The findings provide a reference for the vibration analysis methods and the lumped parameters layout design of elastic beams used in engineering.
基金The National Natural Science Foundation of China(Director Program)(No.50848015)the Innovative Research Team Incubation Financing Projects of Southwest Jiaotong University(No.2007IRT06)
文摘The support layer is an important component of twin-block ballastless track. The modulus of the support layer is an important design parameter and must be carefully solved. We studied the bending stress and deformation of track slab and support layer due to train load using the beam-plate finite element model on elastic foundation. The results show that support layer type has great impact on both support layer deformation and the stress on subgrade, but has little impact on the bending stress of either track slab or support layer. The continuous support layer type, and articulated support layer type with shear transfer device at their ends, are recommended. In order to keep the stress in the support layer less than that in track slab, the modulus of the continuous, unit, and articulated types of support layer ( in unit twin-block ballastless track), and the support layer in continuous twin-block ballastless track, should not be larger than 15, 22, 20.5 and 5 GPa, respectively. In addition, the modulus of the unit-type support layer should not be more than 20 GPa, to ensure the step in support layer remains less than 1 mm.
文摘Based on study of the influence of main roof fracture on ground pressure, this paper considered the immediate roof as a semi-infinite long beam on a Winkler elastic foundation. In the model the coal seam is the foundation and the pressure caused by mian roof deflection is the load. Having solved the model and analyzed relevant factors,the authors indicate that the disturbance caused by the breakage of the mian roof can be observed in both gates of longwall face and explain why it can be. The paper points out that the applicability of the method to obtain the disturbance information by measuring the loads on supports is wider than that by measuring the roof convergence rate. The results are useful for monitoring and predicting ground pressure.