期刊文献+
共找到3,295篇文章
< 1 2 165 >
每页显示 20 50 100
基于SNA-BN的三峡船闸预约调度模式社会风险评估
1
作者 李嵘 刘清 +3 位作者 王磊 钟悦 兰毓峰 南航 《中国安全科学学报》 北大核心 2025年第8期148-155,共8页
为提升三峡船闸智能化水平及风险承载能力,首先,采用社会网络分析(SNA)方法识别并提取三峡船闸预约调度的利益相关方,通过点度中心度、中介中心度和接近中心度这3种中心性指标表征利益相关方的网络特征,并从合法性、合理性、可行性、可... 为提升三峡船闸智能化水平及风险承载能力,首先,采用社会网络分析(SNA)方法识别并提取三峡船闸预约调度的利益相关方,通过点度中心度、中介中心度和接近中心度这3种中心性指标表征利益相关方的网络特征,并从合法性、合理性、可行性、可控性4个维度构建评价指标体系;其次,根据指标间的潜在耦合关系,运用贝叶斯网络(BN)构建三峡船闸预约调度模式社会风险评估模型,以量化各指标作用的方向与强度;最后,通过敏感性分析识别影响社会稳定性的关键因素。结果表明:三峡船闸预约调度模式下的社会风险等级处于较低水平;评价指标体系中的4个准则指标对综合社会风险的影响强度排序为:合法性>可控性>可行性>合理性;规则修订、审批及发布的合规性,负面舆论易发性,群体性事件易发性,预约成功率,安全管理策略覆盖度等指标是影响总体社会风险的关键因素。 展开更多
关键词 社会网络分析(SNA) 贝叶斯网络(bn) 三峡船闸 预约调度 社会风险评估 利益相关方
在线阅读 下载PDF
基于DBN-GRA的非坠机民航客机火灾风险分析 被引量:1
2
作者 王霞 孟娟 张海军 《中国安全生产科学技术》 北大核心 2025年第4期202-210,共9页
为降低民航客机火灾事故率,以飞行全过程及3个关键飞行阶段作为维度,采用动态贝叶斯网络模型对非坠机民航客机火灾进行风险分析。根据火灾起火燃烧的当量比及事故演化的过程,基于事故致因模型确定事件因素,构建火灾风险分析模型;收集201... 为降低民航客机火灾事故率,以飞行全过程及3个关键飞行阶段作为维度,采用动态贝叶斯网络模型对非坠机民航客机火灾进行风险分析。根据火灾起火燃烧的当量比及事故演化的过程,基于事故致因模型确定事件因素,构建火灾风险分析模型;收集2014—2024年民航火灾事故数据,确定基本事件的先验概率,并应用BWM法计算中间事件的条件概率;运用灰色关联分析提取各维度关联因素结合动态时序变化构建动态贝叶斯网络,进行火灾风险分析,识别关键风险因素。研究结果表明:非坠机民航客机火灾初期发展阶段时物的因素与环境因素影响最高,充分燃烧阶段时组织管理因素和货物因素影响最高;飞行关键阶段中飞机机体自身因素和组织管理因素为高风险因素。研究结果可为提高非坠机民航客机火灾风险预警与应急管理能力提供决策参考。 展开更多
关键词 非坠机事件 民航客机火灾 动态贝叶斯网络 灰色关联分析 风险分析
在线阅读 下载PDF
基于VMD-BN的液压支架电磁先导阀故障诊断方法研究
3
作者 张杰 杨爱琴 +6 位作者 许春雨 宋建成 田慕琴 宋单阳 李磊 郝振杰 马锐 《机床与液压》 北大核心 2025年第16期164-171,179,共9页
电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障... 电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障诊断方法进行研究,提出基于电流信号变分模态分解和贝叶斯网络的电液控制系统电磁先导阀故障诊断方法。采用变分模态分解算法对液压支架电磁先导阀的驱动电流信号进行分析,利用鲸鱼优化算法优化IMF个数和惩罚因子,得到多个时域和频域的分量。提取电流信号各个分量的能量熵,将其作为故障特征向量并输入所建立的贝叶斯网络中分析故障原因,利用先验概率和条件概率对故障发生的后验概率进行推理。最后,通过煤矿井下实际的故障电磁先导阀对文中所提故障诊断方法进行实验验证。结果表明:所提诊断方法可以基于电磁阀驱动电流单一信源提取能量特征差异,实现电磁先导阀的故障诊断,准确率达到90%;与现有诊断方法相比,准确性提高,实施难度降低。 展开更多
关键词 电磁先导阀 变分模态分解 能量熵 贝叶斯网络 故障诊断
在线阅读 下载PDF
基于BT-BN的无人机运行安全风险分析
4
作者 齐福强 张晓阳 +2 位作者 陈姝宁 孟明源 朱峰 《科学技术与工程》 北大核心 2025年第20期8745-8752,共8页
为有效评估并控制无人机(unmanned aerial vehicle, UAV)运行风险,在总结无人机地面撞击各种风险因素的基础上,分析无人机地面撞击可能的发生原因,确定相应的控制措施,建立风险分析与控制技术相结合的安全屏障模型,可清晰地显示无人机... 为有效评估并控制无人机(unmanned aerial vehicle, UAV)运行风险,在总结无人机地面撞击各种风险因素的基础上,分析无人机地面撞击可能的发生原因,确定相应的控制措施,建立风险分析与控制技术相结合的安全屏障模型,可清晰地显示无人机运行安全致因、缓解措施以及事故后果之间的逻辑关系;进一步将蝴蝶结(bow-tie, BT)模型映射到贝叶斯网络(Bayesian network, BN),量化BT模型中各要素,计算不安全事件发生的概率。结果表明:该模型能够清晰地展现风险控制过程并有效降低无人机运行风险,为无人机运行风险评估与控制提供了一种高效、实用的方法。 展开更多
关键词 无人机(UAV) 运行风险 蝴蝶结(BT)模型 贝叶斯网络(bn) 风险控制
在线阅读 下载PDF
基于故障树和模糊BN的地铁工程技术接口施工风险评估
5
作者 闫林君 刘晶晶 +1 位作者 王亚妮 陈慧鑫 《中国安全科学学报》 北大核心 2025年第11期24-31,共8页
为量化城市地铁工程技术接口施工风险并甄别关键风险因素,提出一种基于故障树和模糊贝叶斯网络(BN)的地铁工程技术接口施工风险评估方法。首先,从人员、材料设备、技术、环境、管理5个方面识别出地铁工程技术接口施工风险因素;然后,运... 为量化城市地铁工程技术接口施工风险并甄别关键风险因素,提出一种基于故障树和模糊贝叶斯网络(BN)的地铁工程技术接口施工风险评估方法。首先,从人员、材料设备、技术、环境、管理5个方面识别出地铁工程技术接口施工风险因素;然后,运用故障树模型梳理施工风险因素之间的逻辑关系,构建地铁工程技术接口施工风险BN模型,并基于模糊集理论和专家经验评估各施工风险因素发生概率;最后,以北京地铁17号线北段工程为例,进行施工风险仿真评估,验证文中所提风险评估方法的科学性和有效性。研究结果表明:在地铁工程技术接口施工阶段,风险发生的概率为65%,处于中风险等级,且与工程技术接口实际施工的情况相匹配;通过逆向诊断推理,可快速识别出影响较大的风险因素组合,提高技术接口施工风险事件的诊断效率;通过敏感性分析得出,技术接口施工人员安全意识薄弱、接口施工管理制度的落实情况差是导致工程技术接口施工风险发生的关键致险因素。通过构建故障树模型,清晰梳理了风险因素间的逻辑关系,再转化为模糊BN模型,实现了对风险概率的计算与评估。 展开更多
关键词 故障树 模糊贝叶斯网络(bn) 地铁工程技术接口 施工风险 风险因素
在线阅读 下载PDF
Finding optimal Bayesian networks by a layered learning method 被引量:4
6
作者 YANG Yu GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期946-958,共13页
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos... It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms. 展开更多
关键词 bayesian network (bn) structure LEARNING layeredoptimal LEARNING (LOL)
在线阅读 下载PDF
Learning Bayesian networks by constrained Bayesian estimation 被引量:3
7
作者 GAO Xiaoguang YANG Yu GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期511-524,共14页
Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probabil... Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probability table (CPT) parameters. If training data are sparse, purely data-driven methods often fail to learn accurate parameters. Then, expert judgments can be introduced to overcome this challenge. Parameter constraints deduced from expert judgments can cause parameter estimates to be consistent with domain knowledge. In addition, Dirichlet priors contain information that helps improve learning accuracy. This paper proposes a constrained Bayesian estimation approach to learn CPTs by incorporating constraints and Dirichlet priors. First, a posterior distribution of BN parameters is developed over a restricted parameter space based on training data and Dirichlet priors. Then, the expectation of the posterior distribution is taken as a parameter estimation. As it is difficult to directly compute the expectation for a continuous distribution with an irregular feasible domain, we apply the Monte Carlo method to approximate it. In the experiments on learning standard BNs, the proposed method outperforms competing methods. It suggests that the proposed method can facilitate solving real-world problems. Additionally, a case study of Wine data demonstrates that the proposed method achieves the highest classification accuracy. 展开更多
关键词 bayesian networks (bns) PARAMETER LEARNING CONSTRAINTS SPARSE data
在线阅读 下载PDF
Modeling of combined Bayesian networks and cognitive framework for decision-making in C2 被引量:8
8
作者 Li Wang Mingzhe Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期812-820,共9页
The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approac... The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2. 展开更多
关键词 bayesian networks decision support cognitive framework command and control colored Petri nets.
在线阅读 下载PDF
融合LDA-BN的船舶碰撞事故致因分析
9
作者 邵波 刘巧 +2 位作者 柯善钢 郑霞忠 贺语琴 《安全与环境学报》 北大核心 2025年第1期157-164,共8页
为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报... 为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报告,提取27个事故致因主题;其次,利用事故树方法厘清调查报告中致因间的影响关系,构建事故致因贝叶斯网络结构,使用期望最大化算法进行贝叶斯网络参数学习,确定各节点的条件概率,构建事故致因贝叶斯网络模型;最后,通过逆向推理分析、最大致因链分析及敏感性分析,找出导致船舶碰撞事故发生的主要致因因素。结果显示:安全管理不到位、疏忽瞭望、事发水域通航环境复杂是引发船舶碰撞事故可能性大的致因,航线保持不当、应急处置不当、违规穿越锚地是导致船舶碰撞事故发生的最敏感致因因素。 展开更多
关键词 安全社会工程 船舶碰撞 狄利克雷分布主题模型 贝叶斯网络 事故致因
在线阅读 下载PDF
Clustering routing algorithm of wireless sensor networks based on Bayesian game 被引量:9
10
作者 Gengzhong Zheng Sanyang Liu Xiaogang Qi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期154-159,共6页
To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple... To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively. 展开更多
关键词 wireless sensor networks (WSNs) clustering routing bayesian game energy efficiency.
在线阅读 下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
11
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 bayesian network structure learning ordering search space graph search space prior constraint
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
12
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 bayesian networks Genetic algorithm Structure learning Equivalent class
在线阅读 下载PDF
基于数据驱动的FTA-BN煤矿火灾事故分析
13
作者 史恭龙 齐泓辰 刘希希 《西安科技大学学报》 北大核心 2025年第6期1168-1177,共10页
为能够对煤矿火灾事故致灾因素定量分析,研究融合故障树分析法(FTA)与贝叶斯网络(BN),构建数据驱动的FTA-BN模型,量化分析人-机-环-管多因素作用,识别关键致灾因子优先级,为火灾防控提供决策支持。首先,统计了2000—2023年间58起煤矿火... 为能够对煤矿火灾事故致灾因素定量分析,研究融合故障树分析法(FTA)与贝叶斯网络(BN),构建数据驱动的FTA-BN模型,量化分析人-机-环-管多因素作用,识别关键致灾因子优先级,为火灾防控提供决策支持。首先,统计了2000—2023年间58起煤矿火灾事故调查报告,采用故障树分析方法构建火灾事故故障树,明确致灾因素及其层级关系;其次,将故障树模型转化为贝叶斯网络模型,并借助GeNIe软件完成网络构建和分析;最后,计算各因素的后验概率及重要度,识别煤矿火灾的关键因素,并提出针对性的控制优化策略。结果表明:违章操作、安全意识差和管理混乱是煤矿火灾的主要诱因;电缆短路及消防设施配备不全等设备因素对火灾事故具有显著影响。研究构建的FTA-BN模型可以量化分析煤矿火灾事故的关键致因因素,为煤矿安全管理研究提供新的范式。 展开更多
关键词 煤矿火灾 贝叶斯网络 故障树 敏感度分析 重要度分析
在线阅读 下载PDF
基于AHP-DST融合专家先验知识的BN参数学习
14
作者 陈海洋 吝红凯 +2 位作者 任智芳 刘静 张静 《系统仿真学报》 北大核心 2025年第11期2778-2792,共15页
针对小样本数据集条件下采用单一专家先验知识可能存在不确定性导致BN参数学习精度不高问题,设计了一种基于AHP-DST融合专家先验知识的BN参数学习方法。利用层次分析法的思想结合证据理论合成规则计算出专家综合先验知识;将专家综合先... 针对小样本数据集条件下采用单一专家先验知识可能存在不确定性导致BN参数学习精度不高问题,设计了一种基于AHP-DST融合专家先验知识的BN参数学习方法。利用层次分析法的思想结合证据理论合成规则计算出专家综合先验知识;将专家综合先验知识加入到正态分布中,与单调性约束相结合得到虚拟样本信息;将虚拟样本信息加入到贝叶斯估计中得到网络参数估计值。在不同样本量条件下进行仿真验证,结果表明:在样本数据较小时,所提方法的KL散度始终优于其他4种方法,运行时间则略高于其他两种方法,总体上,所提算法综合性能优于其他4种方法,更适用于样本数据量较小的情况。将所提方法应用于空中目标对海面舰艇的攻击意图识别中,仿真结果能够较好的反应实际情况,进一步验证了方法的有效性和可行性。 展开更多
关键词 贝叶斯网络 参数学习 小数据集 层次分析法 证据理论 单调性约束
在线阅读 下载PDF
Reliability analysis of monotone coherent multi-state systems based on Bayesian networks 被引量:2
15
作者 Binghua Song Zhongbao Zhou +2 位作者 Chaoqun Ma Jinglun Zhou Shaofeng Geng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第6期1326-1335,共10页
The Bayesian networks (BNs) provide a robust probabilistic method of reasoning under uncertainty and have been successfully applied to a variety of real-world tasks. Aiming to explore the capabilities of the BN formal... The Bayesian networks (BNs) provide a robust probabilistic method of reasoning under uncertainty and have been successfully applied to a variety of real-world tasks. Aiming to explore the capabilities of the BN formalism in reliability analysis of monotone coherent multi-state systems, the BNs are compared with a popular tool for reliability analysis of monotone coherent multi-state systems, namely the multi-state fault trees (MFTs). It is shown that any MFT can be directly mapped into BN and the basic inference techniques on the latter may be used to obtain classical parameters computed from the former (i.e. probability distribution of top variable, minimal upper vectors and maximum lower vectors for any performance level, importance measures of components). Furthermore, some additional information can be obtained by using BN, both at the modeling and analysis level. At the modeling level, several restrictive assumptions implicit in the MFT methodology can be removed and various kinds of dependencies among components can be accommodated. At the analysis level, a general diagnostic analysis can be performed. The comparison of these methods is illustrated by an example of the water supply system. © 2016 Beijing Institute of Aerospace Information. 展开更多
关键词 bayesian networks Probability distributions RELIABILITY Reliability theory VECTORS Water supply Water supply systems
在线阅读 下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:4
16
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic bayesian network(DDbn) parameter learning missing data filling bayesian estimation
在线阅读 下载PDF
A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks 被引量:6
17
作者 MAHMOOD Ahmad TANG Xiao-wei +2 位作者 QIU Jiang-nan GU Wen-jing FEEZAN Ahmad 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期500-516,共17页
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ... Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon. 展开更多
关键词 bayesian belief network cone penetration test seismic soil liquefaction interpretive structural modeling structural learning
在线阅读 下载PDF
Using junction trees for structural learning of Bayesian networks 被引量:1
18
作者 Mingmin Zhu Sanyang Liu +1 位作者 Youlong Yang Kui Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期286-292,共7页
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas... The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented. 展开更多
关键词 bayesian network bn junction tree scoring function structural learning conditional independence.
在线阅读 下载PDF
An evaluation method of contribution rate based on fuzzy Bayesian networks for equipment system-of-systems architecture 被引量:5
19
作者 XU Renjie LIU Xin +2 位作者 CUI Donghao XIE Jian GONG Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期574-587,共14页
The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev... The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network. 展开更多
关键词 equipment system-of-systems architecture(ESoSA) contribution rate evaluation fuzzy bayesian network(Fbn) fuzzy set theory
在线阅读 下载PDF
融合N-K-DBN模型的船舶自沉事故风险因素动态耦合分析
20
作者 崔秀芳 曾杰熙 +1 位作者 邵志鹏 安楠楠 《安全与环境学报》 北大核心 2025年第6期2080-2091,共12页
我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网... 我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网络(Dynamic Bayesian Network, DBN)研究船舶自沉风险因素的动态耦合特性,通过文本挖掘技术分析中国海事局(CMSA)公布的146起船舶自沉事故报告,对风险因素进行分类并探究其耦合机制。首先,利用N-K模型量化各风险因素间的耦合度和关系;然后,利用贝叶斯网络(BN)模型在N-K模型基础上进一步量化和优化了耦合风险,减少其主观性;最后,在BN结构上加入时间序列建立N-K-DBN风险动态耦合模型,通过风险概率分析、敏感性分析、正向推理、反向诊断和不确定性分析等,确定影响动态风险关联性的关键因素及催化因素,实现对航行中耦合风险的动态控制,并提出风险管理策略和防范措施,以提升海上安全。结果表明:船舶自沉事故的发生与耦合值呈正相关,耦合因素越多风险值越高,耦合相互作用越强。事故初期,人为因素和管理因素是船舶自沉事件的关键致因,其交叉耦合时风险更为显著。随着时间推移,船舶因素对事故的影响逐渐提高,更易与人为因素发生交叉耦合导致动态风险增强,而恶劣气象是触发船舶与其他因素耦合的催化因素,易诱发多因素的交叉耦合风险,导致事故发生概率增大。通过研究识别出安全意识淡薄、公司管理不到位、船舶故障、船舶不适航、船舶管理不当和公司未履责等是引发自沉事故的关键动态风险耦合因素,以及恶劣气象这一重要的动态风险耦合催化因素,这些因素须受到高度重视并对它们采取相应防范措施。 展开更多
关键词 安全工程 船舶自沉事故 N-K模型 动态贝叶斯网络 风险动态耦合分析
在线阅读 下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部