To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr...To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.展开更多
Aiming at the problem that the consumption data of new ammunition is less and the demand is difficult to predict,combined with the law of ammunition consumption under different damage grades,a Bayesian inference metho...Aiming at the problem that the consumption data of new ammunition is less and the demand is difficult to predict,combined with the law of ammunition consumption under different damage grades,a Bayesian inference method for ammunition demand based on Gompertz distribution is proposed.The Bayesian inference model based on Gompertz distribution is constructed,and the system contribution degree is introduced to determine the weight of the multi-source information.In the case where the prior distribution is known and the distribution of the field data is unknown,the consistency test is performed on the prior information,and the consistency test problem is transformed into the goodness of the fit test problem.Then the Bayesian inference is solved by the Markov chain-Monte Carlo(MCMC)method,and the ammunition demand under different damage grades is gained.The example verifies the accuracy of this method and solves the problem of ammunition demand prediction in the case of insufficient samples.展开更多
In this proceeding,some highlight results on the constraints of the nuclear matter equation of state(EOS)from the data of nucleus resonance and neutron-skin thickness using the Bayesian approach based on the Skyrme-Ha...In this proceeding,some highlight results on the constraints of the nuclear matter equation of state(EOS)from the data of nucleus resonance and neutron-skin thickness using the Bayesian approach based on the Skyrme-Hartree-Fock model and its extension have been presented.Typically,the anti-correlation and positive correlations between the slope parameter and the value of the symmetry energy at the saturation density under the constraint of the neutron-skin thickness and the isovector giant dipole resonance have been discussed respectively.It’s shown that the Bayesian analysis can help to find a compromise for the“PREXII puzzle”and the“soft Tin puzzle”.The possible modifications on the constraints of lower-order EOS parameters as well as the relevant correlation when higher-order EOS parameters are incorporated as independent variables have been further illustrated.For a given model and parameter space,the Bayesian approach serves as a good analysis tool suitable for multi-messengers versus multi-variables,and is helpful for constraining quantitatively the model parameters as well as their correlations.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
Due to the simplicity and flexibility of the power law process,it is widely used to model the failures of repairable systems.Although statistical inference on the parameters of the power law process has been well deve...Due to the simplicity and flexibility of the power law process,it is widely used to model the failures of repairable systems.Although statistical inference on the parameters of the power law process has been well developed,numerous studies largely depend on complete failure data.A few methods on incomplete data are reported to process such data,but they are limited to their specific cases,especially to that where missing data occur at the early stage of the failures.No framework to handle generic scenarios is available.To overcome this problem,from the point of view of order statistics,the statistical inference of the power law process with incomplete data is established in this paper.The theoretical derivation is carried out and the case studies demonstrate and verify the proposed method.Order statistics offer an alternative to the statistical inference of the power law process with incomplete data as they can reformulate current studies on the left censored failure data and interval censored data in a unified framework.The results show that the proposed method has more flexibility and more applicability.展开更多
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.
基金the Army Scientific Research(KYSZJWJK1744,012016012600B11403).
文摘Aiming at the problem that the consumption data of new ammunition is less and the demand is difficult to predict,combined with the law of ammunition consumption under different damage grades,a Bayesian inference method for ammunition demand based on Gompertz distribution is proposed.The Bayesian inference model based on Gompertz distribution is constructed,and the system contribution degree is introduced to determine the weight of the multi-source information.In the case where the prior distribution is known and the distribution of the field data is unknown,the consistency test is performed on the prior information,and the consistency test problem is transformed into the goodness of the fit test problem.Then the Bayesian inference is solved by the Markov chain-Monte Carlo(MCMC)method,and the ammunition demand under different damage grades is gained.The example verifies the accuracy of this method and solves the problem of ammunition demand prediction in the case of insufficient samples.
基金Supported by National Natural Science Foundation of China (11922514)。
文摘In this proceeding,some highlight results on the constraints of the nuclear matter equation of state(EOS)from the data of nucleus resonance and neutron-skin thickness using the Bayesian approach based on the Skyrme-Hartree-Fock model and its extension have been presented.Typically,the anti-correlation and positive correlations between the slope parameter and the value of the symmetry energy at the saturation density under the constraint of the neutron-skin thickness and the isovector giant dipole resonance have been discussed respectively.It’s shown that the Bayesian analysis can help to find a compromise for the“PREXII puzzle”and the“soft Tin puzzle”.The possible modifications on the constraints of lower-order EOS parameters as well as the relevant correlation when higher-order EOS parameters are incorporated as independent variables have been further illustrated.For a given model and parameter space,the Bayesian approach serves as a good analysis tool suitable for multi-messengers versus multi-variables,and is helpful for constraining quantitatively the model parameters as well as their correlations.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金supported by the National Natural Science Foundation of China(51775090)。
文摘Due to the simplicity and flexibility of the power law process,it is widely used to model the failures of repairable systems.Although statistical inference on the parameters of the power law process has been well developed,numerous studies largely depend on complete failure data.A few methods on incomplete data are reported to process such data,but they are limited to their specific cases,especially to that where missing data occur at the early stage of the failures.No framework to handle generic scenarios is available.To overcome this problem,from the point of view of order statistics,the statistical inference of the power law process with incomplete data is established in this paper.The theoretical derivation is carried out and the case studies demonstrate and verify the proposed method.Order statistics offer an alternative to the statistical inference of the power law process with incomplete data as they can reformulate current studies on the left censored failure data and interval censored data in a unified framework.The results show that the proposed method has more flexibility and more applicability.