期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
2
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 bayesian network structure learning ordering search space graph search space prior constraint
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
3
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
Using junction trees for structural learning of Bayesian networks 被引量:1
4
作者 Mingmin Zhu Sanyang Liu +1 位作者 Youlong Yang Kui Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期286-292,共7页
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas... The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented. 展开更多
关键词 bayesian network (bn junction tree scoring function structural learning conditional independence.
在线阅读 下载PDF
Finding optimal Bayesian networks by a layered learning method 被引量:4
5
作者 YANG Yu GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期946-958,共13页
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos... It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms. 展开更多
关键词 bayesian network (bn) structure learning layeredoptimal learning (LOL)
在线阅读 下载PDF
Learning Bayesian networks by constrained Bayesian estimation 被引量:3
6
作者 GAO Xiaoguang YANG Yu GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期511-524,共14页
Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probabil... Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probability table (CPT) parameters. If training data are sparse, purely data-driven methods often fail to learn accurate parameters. Then, expert judgments can be introduced to overcome this challenge. Parameter constraints deduced from expert judgments can cause parameter estimates to be consistent with domain knowledge. In addition, Dirichlet priors contain information that helps improve learning accuracy. This paper proposes a constrained Bayesian estimation approach to learn CPTs by incorporating constraints and Dirichlet priors. First, a posterior distribution of BN parameters is developed over a restricted parameter space based on training data and Dirichlet priors. Then, the expectation of the posterior distribution is taken as a parameter estimation. As it is difficult to directly compute the expectation for a continuous distribution with an irregular feasible domain, we apply the Monte Carlo method to approximate it. In the experiments on learning standard BNs, the proposed method outperforms competing methods. It suggests that the proposed method can facilitate solving real-world problems. Additionally, a case study of Wine data demonstrates that the proposed method achieves the highest classification accuracy. 展开更多
关键词 bayesian networks (bns) PARAMETER learning CONSTRAINTS SPARSE data
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
7
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 bayesian networks Genetic algorithm structure learning Equivalent class
在线阅读 下载PDF
Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization 被引量:3
8
作者 Chunfeng Wang Sanyang Liu Mingmin Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期784-790,共7页
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt... Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm. 展开更多
关键词 bayesian network structure learning ant colony optimization unconstrained optimization
在线阅读 下载PDF
A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization 被引量:21
9
作者 JI Jun-Zhong ZHANG Hong-Xun HU Ren-Bing LIU Chun-Nian 《自动化学报》 EI CSCD 北大核心 2009年第3期281-288,共8页
关键词 最优化 随机系统 自动化 bn
在线阅读 下载PDF
基于改进DEMATEL-ISM-BN的人因视角下煤矿事故致因研究 被引量:2
10
作者 赵天亮 王冰山 +7 位作者 台发强 姜琦 王永杰 代宗 常金鹏 马晟翔 傅贵 姜伟 《安全与环境工程》 北大核心 2025年第1期91-99,117,共10页
为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入... 为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入水平等14项指标的人因视角下煤矿事故影响因素体系,并运用基于灰色理论(Grey theory)和贝叶斯网络(BN)的决策试验与评价实验室法与解释结构模型(DEMATEL-ISM)对影响因素进行了分析,得到了各影响因素的关键程度、层次关系、作用路径和人因视角下煤矿事故最大致因链路径。结果表明:首先,利用Grey-DEMATEL法研究分析各影响因素中心度与原因度,识别出安全培训水平、员工安全意识水平、员工知识技能水平、员工安全心理水平等主要影响因素;然后,利用ISM法划分影响因素间的层次关系,得到安全文化水平是本质影响因素,规章制度完善和实施水平、安全投入水平、纠正问题水平等11个因素是过渡影响因素,违章指挥、违规作业是表层影响因素;最后,运用构建的BN模型反向诊断推理得到最大致因路径。研究结果可为人因视角下煤矿事故预防研究提供理论依据和决策支撑。 展开更多
关键词 煤矿事故 人因分析 灰色理论 决策试验与评价实验室法(DEMATEL) 解释结构模型(ISM) 贝叶斯网络(bn)
在线阅读 下载PDF
基于评分缓存的节点序空间下BN结构学习
11
作者 高晓光 闫栩辰 +2 位作者 王紫东 刘晓寒 冯奇 《系统工程与电子技术》 EI CSCD 北大核心 2024年第12期4091-4107,共17页
针对大规模贝叶斯网络结构学习容易陷入局部最优的问题,提出一种节点序空间下迭代局部搜索算法。在局部搜索环节,设计评分缓存的选择插入算子和次优解的容忍策略,评估自适应的纵向插入邻域,攻克由盲目搜索导致的邻域受限问题。在迭代重... 针对大规模贝叶斯网络结构学习容易陷入局部最优的问题,提出一种节点序空间下迭代局部搜索算法。在局部搜索环节,设计评分缓存的选择插入算子和次优解的容忍策略,评估自适应的纵向插入邻域,攻克由盲目搜索导致的邻域受限问题。在迭代重启环节,采用等价类结构和深度优先遍历的转换机制,避免由随机扰动导致的评分退化问题。通过相融实验分别验证搜索和迭代算法的有效性。实验结果表明,相较于现有的主流方法,迭代局部搜索算法能够精确地学习大规模网络结构。 展开更多
关键词 贝叶斯网络 结构学习 节点序 局部搜索 迭代重启
在线阅读 下载PDF
A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks 被引量:6
12
作者 MAHMOOD Ahmad TANG Xiao-wei +2 位作者 QIU Jiang-nan GU Wen-jing FEEZAN Ahmad 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期500-516,共17页
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ... Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon. 展开更多
关键词 bayesian belief network cone penetration test seismic soil liquefaction interpretive structural modeling structural learning
在线阅读 下载PDF
基于Stacking策略的集成BN网络目标威胁评估 被引量:2
13
作者 王紫东 高晓光 刘晓寒 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期586-598,共13页
现有基于贝叶斯网络的威胁评估采用专家经验确定的朴素结构,其推理评估结果精度欠佳。为此,提出一种融合专家经验与数据观测的基于Stacking策略的集成贝叶斯网络(ensemble Bayesian network,EBN)。首先使用不同搜索空间内的评分优化算... 现有基于贝叶斯网络的威胁评估采用专家经验确定的朴素结构,其推理评估结果精度欠佳。为此,提出一种融合专家经验与数据观测的基于Stacking策略的集成贝叶斯网络(ensemble Bayesian network,EBN)。首先使用不同搜索空间内的评分优化算法获得数据观测模型集并进行模型平均;然后使用专家经验朴素模型对平均网络进行修剪,形成威胁约束集合;最后以动态规划为基础,通过该集合限制节点序图扩展,以求取全局最优威胁评估网络。在作战想定中,EBN模型单目标威胁概率推理精度比朴素贝叶斯模型高出10%,在多目标威胁排序任务中,其Spearman系数分布亦优于朴素模型。 展开更多
关键词 威胁评估 贝叶斯网络 结构学习 约束优化
在线阅读 下载PDF
小数据集条件下基于双重约束的BN参数学习 被引量:8
14
作者 郭志高 高晓光 邸若海 《自动化学报》 EI CSCD 北大核心 2014年第7期1509-1516,共8页
针对小数据集条件下的贝叶斯网络(Bayesian network,BN)参数学习问题,提出了一种基于双重约束的贝叶斯网络参数学习方法.首先,对网络中的参数进行分析并将网络中的参数划分为:父节点组合状态相同而子节点状态不同的参数和父节点组合状... 针对小数据集条件下的贝叶斯网络(Bayesian network,BN)参数学习问题,提出了一种基于双重约束的贝叶斯网络参数学习方法.首先,对网络中的参数进行分析并将网络中的参数划分为:父节点组合状态相同而子节点状态不同的参数和父节点组合状态不同而子节点状态相同的参数;然后,针对第一类参数提出了一种新的基于Beta分布拟合的贝叶斯估计方法,而针对第二类参数利用已有的保序回归估计方法进行学习,进而实现了对网络中参数的双重约束学习;最后,通过仿真实例说明了基于双重约束的参数学习方法对小数据集条件下贝叶斯网络参数学习精度提高的有效性. 展开更多
关键词 贝叶斯网络 参数学习 小数据集 BETA分布 保序回归
在线阅读 下载PDF
基于Bayesian改进算法的回转窑故障诊断模型研究 被引量:21
15
作者 刘浩然 吕晓贺 +2 位作者 李轩 李世昭 史永红 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1554-1561,共8页
贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结... 贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结合,提出了一种新的贝叶斯网络结构学习改进算法。通过与经典的爬山法和K2算法进行比较,结果表明该改进算法不仅能够得到较高准确率的模型,而且能够提高模型建立的效率。最后基于该改进算法,结合冀东水泥集团的水泥回转窑现场运行数据,建立了水泥回转窑故障诊断模型,实现了精确快速的故障诊断。 展开更多
关键词 最大支撑树 改进算法 贝叶斯网络结构学习 水泥回转窑 故障诊断模型
在线阅读 下载PDF
一种学习稀疏BN最优结构的改进K均值分块学习算法 被引量:6
16
作者 高晓光 王晨凤 邸若海 《自动化学报》 EI CSCD 北大核心 2020年第5期923-933,共11页
目前贝叶斯网络(Bayesian networks,BN)的传统结构学习算法在处理高维数据时呈现出计算负担过大、在合理时间内难以得到期望精度结果的问题.为了在高维数据下学习稀疏BN的最优结构,本文提出了一种学习稀疏BN最优结构的改进K均值分块学... 目前贝叶斯网络(Bayesian networks,BN)的传统结构学习算法在处理高维数据时呈现出计算负担过大、在合理时间内难以得到期望精度结果的问题.为了在高维数据下学习稀疏BN的最优结构,本文提出了一种学习稀疏BN最优结构的改进K均值分块学习算法.该算法采用分而治之的策略,首先采用互信息作为节点间距离度量,利用融合互信息的改进K均值算法对网络分块;其次,使用MMPC(Max-min parent and children)算法得到整个网络的架构,根据架构找到块间所有边的可能连接方向,从而找到所有可能的图结构;之后,对所有图结构依次进行结构学习;最终利用评分找到最优BN.实验证明,相比现有分块结构学习算法,本文提出的算法不仅习得了网络的精确结构,且学习速度有一定提高;相比非分块经典结构学习算法,本文提出的算法在保证精度基础上,学习速度大幅提高,解决了非分块经典结构学习算法无法在合理时间内处理高维数据的难题. 展开更多
关键词 贝叶斯网络 结构学习 改进K均值算法 分块学习
在线阅读 下载PDF
基于稀缺数据集下BN参数学习的目标识别 被引量:4
17
作者 郭文强 高文强 +1 位作者 侯勇严 李然 《计算机工程与应用》 CSCD 北大核心 2018年第17期122-125,150,共5页
针对贝叶斯网络(BN)在目标识别参数建模中常常面临特征数据样本相对稀缺的问题,研究了将稀缺数据集与定性专家经验相融合来估算BN模型参数的方法——CSDE,并据此提出了一种目标识别算法。该算法在BN结构已知的情况下,将定性专家经验转化... 针对贝叶斯网络(BN)在目标识别参数建模中常常面临特征数据样本相对稀缺的问题,研究了将稀缺数据集与定性专家经验相融合来估算BN模型参数的方法——CSDE,并据此提出了一种目标识别算法。该算法在BN结构已知的情况下,将定性专家经验转化为BN条件概率之间的约束集合;随后引入凸优化求解方法完成BN目标识别模型参数的估算。在实验研究中,先通过对经典的BN模型的参数学习问题验证了CSDE算法的有效性;随后,针对实际稀缺样本数据集目标识别问题,进行了建模及识别实验。实验结果表明:所提出的算法能够较好地解决样本数据集相对稀缺条件下的目标识别参数建模问题。 展开更多
关键词 目标识别 稀缺数据集 贝叶斯网络(bn)参数学习 凸优化
在线阅读 下载PDF
基于粒子群优化算法的Bayesian网络结构学习 被引量:7
18
作者 刘欣 贾海洋 刘大有 《小型微型计算机系统》 CSCD 北大核心 2008年第8期1516-1519,共4页
近年来,Bayesian网络已经成为人工智能领域的研究热点.为了更广泛的应用Bayesian网络,本文采用粒子群优化搜索算法,通过对粒子群算法中各个算子的确定,从训练数据样本中学习到Bayesian网络结构,并用测试数据样本测试学习结果与训练数据... 近年来,Bayesian网络已经成为人工智能领域的研究热点.为了更广泛的应用Bayesian网络,本文采用粒子群优化搜索算法,通过对粒子群算法中各个算子的确定,从训练数据样本中学习到Bayesian网络结构,并用测试数据样本测试学习结果与训练数据的匹配程度,试验结果表明,该算法能有效地学习到Bayesian网络结构. 展开更多
关键词 粒子群算法 贝叶斯网络 结构学习
在线阅读 下载PDF
基于信息论的Bayesian网络结构学习算法研究 被引量:6
19
作者 聂文广 刘惟一 +1 位作者 杨运涛 杨明 《计算机应用》 CSCD 北大核心 2005年第1期1-3,10,共4页
Bayesian网是一种进行不确定性推理的有力工具,它结合图型理论和概率理论,可以方便地表示和计算我们感兴趣的事件概率,同时也是对实体之间依赖关系提供了一种紧凑、直观、有效的图形表示。文中基于信息论中测试信息独立理论,对Bayesian... Bayesian网是一种进行不确定性推理的有力工具,它结合图型理论和概率理论,可以方便地表示和计算我们感兴趣的事件概率,同时也是对实体之间依赖关系提供了一种紧凑、直观、有效的图形表示。文中基于信息论中测试信息独立理论,对Bayesian网中各结点进行条件独立(CI)测试,以发现各结点的条件依赖关系,并通过计算结点之间的互相依赖度以发现Bayesian网边的方向,从而构造Bayesian网结构,算法的计算复杂度只需要进行O(N2)次CI测试。 展开更多
关键词 bayesian网络 结构学习 条件独立性 条件互信息 条件依赖度
在线阅读 下载PDF
大跨度钢结构施工安全风险评价IHFACS-BN模型及应用 被引量:26
20
作者 胡韫频 李超 +1 位作者 李宗亮 杨道合 《中国安全科学学报》 CAS CSCD 北大核心 2021年第8期147-154,共8页
为降低大跨度钢结构施工安全事故发生率,提出基于改进人为因素分析及分类系统(IHFACS)与贝叶斯网络(BN)的大跨度钢结构施工安全风险评价模型。首先,引入HFACS方法,结合工程实际改进HFACS法;然后,基于IHFACS全面识别施工安全风险,采用粗... 为降低大跨度钢结构施工安全事故发生率,提出基于改进人为因素分析及分类系统(IHFACS)与贝叶斯网络(BN)的大跨度钢结构施工安全风险评价模型。首先,引入HFACS方法,结合工程实际改进HFACS法;然后,基于IHFACS全面识别施工安全风险,采用粗糙集(RS)方法构建评价指标体系;其次,构建BN模型,并根据现场数据结合模糊集方法确定BN各根节点的先验概率及节点间的条件概率分布,通过GeNIe软件计算系统失效概率,分析关键风险因素;最后,以昆明机场扩建工程为例,验证该模型的有效性。结果表明:模型计算结果与实际情况基本符合,此工程总体安全风险概率为57.62%;焊缝错边、气孔、夹渣与支撑胎架拆除不当的敏感度均超过20%,是大跨度钢结构施工应重点管控的关键风险因素。 展开更多
关键词 大跨度钢结构 施工安全风险 改进人为因素分析及分类系统(IHFACS) 贝叶斯网络(bn) 粗糙集(RS) 模糊集
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部