Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s...Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.展开更多
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p...How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.展开更多
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas...The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented.展开更多
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos...It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms.展开更多
Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probabil...Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probability table (CPT) parameters. If training data are sparse, purely data-driven methods often fail to learn accurate parameters. Then, expert judgments can be introduced to overcome this challenge. Parameter constraints deduced from expert judgments can cause parameter estimates to be consistent with domain knowledge. In addition, Dirichlet priors contain information that helps improve learning accuracy. This paper proposes a constrained Bayesian estimation approach to learn CPTs by incorporating constraints and Dirichlet priors. First, a posterior distribution of BN parameters is developed over a restricted parameter space based on training data and Dirichlet priors. Then, the expectation of the posterior distribution is taken as a parameter estimation. As it is difficult to directly compute the expectation for a continuous distribution with an irregular feasible domain, we apply the Monte Carlo method to approximate it. In the experiments on learning standard BNs, the proposed method outperforms competing methods. It suggests that the proposed method can facilitate solving real-world problems. Additionally, a case study of Wine data demonstrates that the proposed method achieves the highest classification accuracy.展开更多
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th...A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.展开更多
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt...Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm.展开更多
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ...Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.展开更多
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
基金supported by the National Natural Science Fundation of China(61573285)the Doctoral Fundation of China(2013ZC53037)
文摘Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.
基金supported by the National Natural Science Foundation of China(61573285).
文摘How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.
基金supported by the National Natural Science Fundation of China (6097408261075055)the Fundamental Research Funds for the Central Universities (K50510700004)
文摘The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented.
基金supported by the National Natural Science Foundation of China(61573285)
文摘It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms.
基金supported by the National Natural Science Foundation of China(61573285)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(CX201619)
文摘Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probability table (CPT) parameters. If training data are sparse, purely data-driven methods often fail to learn accurate parameters. Then, expert judgments can be introduced to overcome this challenge. Parameter constraints deduced from expert judgments can cause parameter estimates to be consistent with domain knowledge. In addition, Dirichlet priors contain information that helps improve learning accuracy. This paper proposes a constrained Bayesian estimation approach to learn CPTs by incorporating constraints and Dirichlet priors. First, a posterior distribution of BN parameters is developed over a restricted parameter space based on training data and Dirichlet priors. Then, the expectation of the posterior distribution is taken as a parameter estimation. As it is difficult to directly compute the expectation for a continuous distribution with an irregular feasible domain, we apply the Monte Carlo method to approximate it. In the experiments on learning standard BNs, the proposed method outperforms competing methods. It suggests that the proposed method can facilitate solving real-world problems. Additionally, a case study of Wine data demonstrates that the proposed method achieves the highest classification accuracy.
基金This project was supported by the National Natural Science Foundation of China (70572045).
文摘A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.
基金supported by the National Natural Science Foundation of China (60974082,11171094)the Fundamental Research Funds for the Central Universities (K50510700004)+1 种基金the Foundation and Advanced Technology Research Program of Henan Province (102300410264)the Basic Research Program of the Education Department of Henan Province (2010A110010)
文摘Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm.
基金Supported by National Natural Science Foundation of China (60496322), Natural Science Foundation of Beijing (4083034), and Scientific Research Common Program of Beijing Municipal Commission.of Education (KM200610005020)_ _ _
基金Projects(2016YFE0200100,2018YFC1505300-5.3)supported by the National Key Research&Development Plan of ChinaProject(51639002)supported by the Key Program of National Natural Science Foundation of China
文摘Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.
文摘目前贝叶斯网络(Bayesian networks,BN)的传统结构学习算法在处理高维数据时呈现出计算负担过大、在合理时间内难以得到期望精度结果的问题.为了在高维数据下学习稀疏BN的最优结构,本文提出了一种学习稀疏BN最优结构的改进K均值分块学习算法.该算法采用分而治之的策略,首先采用互信息作为节点间距离度量,利用融合互信息的改进K均值算法对网络分块;其次,使用MMPC(Max-min parent and children)算法得到整个网络的架构,根据架构找到块间所有边的可能连接方向,从而找到所有可能的图结构;之后,对所有图结构依次进行结构学习;最终利用评分找到最优BN.实验证明,相比现有分块结构学习算法,本文提出的算法不仅习得了网络的精确结构,且学习速度有一定提高;相比非分块经典结构学习算法,本文提出的算法在保证精度基础上,学习速度大幅提高,解决了非分块经典结构学习算法无法在合理时间内处理高维数据的难题.