Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fl...Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method,and the effects of doping on the photoelectrochemical performance were investigated.The optimal Ti-doped WO_(3) electrode achieved a photocurrent density of 0.53 mA/cm^(2) at 0.6 V(vs Ag/AgCl),110%higher than that of pure WO_(3) nanoplate arrays.Moreover,a significant cathodic shift in the onset potential was observed after doping.X-ray photoelectron spectroscopy valence band and ultraviolet–visible spectra revealed that the band positions of Ti-doped WO_(3) photoanodes moved upward,yielding a lower onset potential.Furthermore,electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO_(3) photoanodes improved after doping,because of the rapid separation of photo-generated charge carriers.Thus,we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
基金Project(Qian Jiao He KY Zi [2021]257) supported provided by the Natural Science Research Project of Education Department of Guizhou Province,ChinaProject(GZSQCC2019003) supported by the High-level Innovative Talent Cultivation Project of Guizhou Province,ChinaProjects(GZLGXM-01,GZLGXM-08) supported by the Academic New Seedling Cultivation and Innovation Exploration Project of Guizhou Institute of Technology,China。
文摘Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method,and the effects of doping on the photoelectrochemical performance were investigated.The optimal Ti-doped WO_(3) electrode achieved a photocurrent density of 0.53 mA/cm^(2) at 0.6 V(vs Ag/AgCl),110%higher than that of pure WO_(3) nanoplate arrays.Moreover,a significant cathodic shift in the onset potential was observed after doping.X-ray photoelectron spectroscopy valence band and ultraviolet–visible spectra revealed that the band positions of Ti-doped WO_(3) photoanodes moved upward,yielding a lower onset potential.Furthermore,electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO_(3) photoanodes improved after doping,because of the rapid separation of photo-generated charge carriers.Thus,we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.