期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于聚类核的核极速学习机
被引量:
1
1
作者
王丽娟
丁世飞
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2019年第3期145-150,共6页
传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛...
传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛化性能好的优点.随着极速学习机的研究发展,核极速学习机的相关理论被提出.核极速学习机是将核函数引入到极速学习机中,可以得到最小二乘解,具有更稳定的泛化性能.本文在核极速学习机的基础上提出了一种基于Bagged聚类核的核极速学习机的分类方法,首先对已有的标记样本和所有的无标记样本采用多次k均值聚类,去构造Bagged聚类核,然后对Bagged聚类核和径向基核进行求和,最终用于核极速学习机的训练中.与传统核极速学习机相比,本文提出的方法可以使用所有的无标记样本,从而尽可能地提高分类的准确率.最后本文通过实验验证了方法的可行性.
展开更多
关键词
极速学习机
k
均值
聚
类
bagged聚类核
RBF
核
函数
在线阅读
下载PDF
职称材料
题名
基于聚类核的核极速学习机
被引量:
1
1
作者
王丽娟
丁世飞
机构
中国矿业大学计算机科学与技术学院
徐州工业职业技术学院信息与电气工程学院
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2019年第3期145-150,共6页
基金
国家自然科学基金项目(61672522、61379501)
文摘
传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛化性能好的优点.随着极速学习机的研究发展,核极速学习机的相关理论被提出.核极速学习机是将核函数引入到极速学习机中,可以得到最小二乘解,具有更稳定的泛化性能.本文在核极速学习机的基础上提出了一种基于Bagged聚类核的核极速学习机的分类方法,首先对已有的标记样本和所有的无标记样本采用多次k均值聚类,去构造Bagged聚类核,然后对Bagged聚类核和径向基核进行求和,最终用于核极速学习机的训练中.与传统核极速学习机相比,本文提出的方法可以使用所有的无标记样本,从而尽可能地提高分类的准确率.最后本文通过实验验证了方法的可行性.
关键词
极速学习机
k
均值
聚
类
bagged聚类核
RBF
核
函数
Keywords
ELM
k-means clustering
bagged
kernel
RBF kernel function
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于聚类核的核极速学习机
王丽娟
丁世飞
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2019
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部