期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于聚类核的核极速学习机 被引量:1
1
作者 王丽娟 丁世飞 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期145-150,共6页
传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛... 传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛化性能好的优点.随着极速学习机的研究发展,核极速学习机的相关理论被提出.核极速学习机是将核函数引入到极速学习机中,可以得到最小二乘解,具有更稳定的泛化性能.本文在核极速学习机的基础上提出了一种基于Bagged聚类核的核极速学习机的分类方法,首先对已有的标记样本和所有的无标记样本采用多次k均值聚类,去构造Bagged聚类核,然后对Bagged聚类核和径向基核进行求和,最终用于核极速学习机的训练中.与传统核极速学习机相比,本文提出的方法可以使用所有的无标记样本,从而尽可能地提高分类的准确率.最后本文通过实验验证了方法的可行性. 展开更多
关键词 极速学习机 k 均值 bagged聚类核 RBF函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部