针对通信中断下由智能网联车辆(Connected and Automated Vehicles,CAV)与人工驾驶车辆(Manually Driven Vehicles,MDV)所组成的混合编队的稳定性控制问题,考虑基于前车-领航车通信拓扑(Predecessor-Leader Following topology,PLF)和...针对通信中断下由智能网联车辆(Connected and Automated Vehicles,CAV)与人工驾驶车辆(Manually Driven Vehicles,MDV)所组成的混合编队的稳定性控制问题,考虑基于前车-领航车通信拓扑(Predecessor-Leader Following topology,PLF)和协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)的混合编队,构建通信正常和通信中断状态下的车辆控制器.基于Routh-Hurwitz稳定性判据和频域分析方法设计稳定条件求解算法,计算控制器和MDV跟驰模型的稳定性条件,并提出针对两种控制器的平滑切换策略.案例分析表明:车队能够稳定安全行驶,各车速度标准差变化率均低于1.8%,平均加速度变化量和其平均值均低于0.016 m/s^(2),说明所提出的稳定性控制算法具有良好的有效性,可实现车辆及编队行驶状态的时空收敛;针对加速场景和减速场景,所提出的控制器切换策略能够分别减小车辆加速度波动幅度达37.1%和59.9%,控制器切换过程中的车辆状态稳定性得到显著提升.展开更多
随着物联网技术的快速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)技术因其低功耗、广覆盖、大容量等特性,成为物联网的重要连接方式。针对NB-IoT网络性能优化问题,提出基于自适应控制算法的优化方案,提高其可靠性、容量...随着物联网技术的快速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)技术因其低功耗、广覆盖、大容量等特性,成为物联网的重要连接方式。针对NB-IoT网络性能优化问题,提出基于自适应控制算法的优化方案,提高其可靠性、容量及能效。通过仿真实验,验证该方案的有效性和性能优势。此外,基于该算法,采用终端感知、网络通信、数据处理以及应用表现4层系统设计架构,设计基于自适应控制算法的NB-IoT物联网系统,满足不断增长的物联网应用需求。展开更多
文摘随着物联网技术的快速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)技术因其低功耗、广覆盖、大容量等特性,成为物联网的重要连接方式。针对NB-IoT网络性能优化问题,提出基于自适应控制算法的优化方案,提高其可靠性、容量及能效。通过仿真实验,验证该方案的有效性和性能优势。此外,基于该算法,采用终端感知、网络通信、数据处理以及应用表现4层系统设计架构,设计基于自适应控制算法的NB-IoT物联网系统,满足不断增长的物联网应用需求。