Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp...Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.展开更多
The reliability of the numerical K ε model for determining wind pressure on building surfaces is evaluated. The solution algorithm is based on a body fitted non orthogonal curvilinear coordinate system and a st...The reliability of the numerical K ε model for determining wind pressure on building surfaces is evaluated. The solution algorithm is based on a body fitted non orthogonal curvilinear coordinate system and a staggered grid arrangement. The covariant velocity components are chosen as dependent variables. Convective fluxes are described by the Power Law Scheme. The grids are generated with an elliptic grid generator using control functions. The results compare favorably with those by Oxford wind tunnel measurements.展开更多
An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the in...An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the inlet boundary conditions according to the exact potential flow solution.Then the wave evolution is simulated by solving the unsteady incompressible Navier-Stokes(N-S)equations coupled with the volume of fluid method.For the small amplitude wave with reasonable wave parameters,the numerical wave result agrees well with that of the given wave model.Finally,a monopile support configuration is introduced and a CFD-based load calculation method is established to accurately calculate the unsteady load under the combined action of wave and wind.The computed unsteady wave load on a small-size monopile support located in the small amplitude wave flow coincides with that of the Morison formula.The load calculations are also performed on a large-size monopile support and a monopile-supported offshore wind turbine under the combined action of small amplitude wave and wind.展开更多
in desisncede, some design knowledse about wind load on buildinss, i. e. ,wind load coefficient of building shape μs, is diasraniniatically prescribed.Wind pressure on a building surface partly depends on the shapo o...in desisncede, some design knowledse about wind load on buildinss, i. e. ,wind load coefficient of building shape μs, is diasraniniatically prescribed.Wind pressure on a building surface partly depends on the shapo of the surfaceand the dimension of the building. This part of desisn knowledge can not bedirectly used in CAD systems.It must be prucesaed in order to autogenerate thewind load on a building for the niechanical analysis of the building structure.The article presents the formalization of design knowledge about wind load onbuildings. A mathematical model for the plane seonietrical contour of buildingstructure is established. The map relationship between the shape, dimension ofbuilding and wind load coefficient of building shape is numerically depicted.Therefore, the autogeneration of wind load on building structure isaccomplished. The data structure and algorithm related to the accomplishmentare also described in details.展开更多
Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system ...Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.展开更多
This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The...This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint connection. The joint consists of a chord and two braces in a single plane. The two braces are fully overlapped with a short segment of the diagonal brace welded directly onto the chord. The characteristic feature of this joint configuration is that the short segment member can be designed to absorb and dissipate energy under cyclic load excitation. The experimental and numerical study revealed that the completely overlapped joint performed better in terms of strength resistance, stiffness, ductility, and energy absorption capacity than the conventional gap joints commonly found in typical X-braced jacket framings. The eccentric jacket could also be designed to becoming less stiff, with an inelastic yielding and local buckling of short segment member, so as to better resist the cyclic load generated from intense environmental forces and earthquake. From the design economics, the eccentric jacket provided a more straightforward fabrication with reduced number of welded joints and shorter thicker wall cans than the conventional X-braced jacket. It can therefore be concluded based on the results presented in the study that by designing the short segment member in accordance with strength and ductility requirement,the eccentric jacket substructure supporting the wind turbine could be made to remain stable under gravity loads and to sustain a significantly large amount of motion in the event of rare and intense earthquake or environmental forces, without collapsing.展开更多
巡检机器人在风载荷作用下会发生一定的摆动,从而导致巡检结果准确性和可靠性降低,参考旋翼类飞行器设计了巡检机器人在风载荷下的平衡机构.首先,利用电机的动力学方程推导电机电压和转速之间的传递函数,使用叶素法建立旋翼产生的升力...巡检机器人在风载荷作用下会发生一定的摆动,从而导致巡检结果准确性和可靠性降低,参考旋翼类飞行器设计了巡检机器人在风载荷下的平衡机构.首先,利用电机的动力学方程推导电机电压和转速之间的传递函数,使用叶素法建立旋翼产生的升力与旋翼转速之间的关系,从而建立平衡机构的输入电压和输出升力之间的联系.其次,分析不同方向的风载荷对巡检机器人工作状态的影响,建立了巡检机器人在横向风载荷下的摆动数学模型.最后,将模糊PID(proportional integral derivative)应用于平衡机构的控制中,开展了巡检机器人的数值仿真和样机实验.结果表明:所设计的平衡机构可以有效抑制巡检机器人在风载荷中的摆动.展开更多
基金supported by China Three Gorges Corporation(Key technology research and demonstration application of large-scale source-net-load-storage integration under the vision of carbon neutrality)Fundamental Research Funds for the Central Universities(2020MS021).
文摘Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.
文摘The reliability of the numerical K ε model for determining wind pressure on building surfaces is evaluated. The solution algorithm is based on a body fitted non orthogonal curvilinear coordinate system and a staggered grid arrangement. The covariant velocity components are chosen as dependent variables. Convective fluxes are described by the Power Law Scheme. The grids are generated with an elliptic grid generator using control functions. The results compare favorably with those by Oxford wind tunnel measurements.
基金supported partly by the National Basic Research Program of China("973"Program)(No.2014CB046200)the National Natural Science Foundation of China(No.11372135)the NUAA Fundamental Research Funds(No.NS2013005)
文摘An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the inlet boundary conditions according to the exact potential flow solution.Then the wave evolution is simulated by solving the unsteady incompressible Navier-Stokes(N-S)equations coupled with the volume of fluid method.For the small amplitude wave with reasonable wave parameters,the numerical wave result agrees well with that of the given wave model.Finally,a monopile support configuration is introduced and a CFD-based load calculation method is established to accurately calculate the unsteady load under the combined action of wave and wind.The computed unsteady wave load on a small-size monopile support located in the small amplitude wave flow coincides with that of the Morison formula.The load calculations are also performed on a large-size monopile support and a monopile-supported offshore wind turbine under the combined action of small amplitude wave and wind.
文摘in desisncede, some design knowledse about wind load on buildinss, i. e. ,wind load coefficient of building shape μs, is diasraniniatically prescribed.Wind pressure on a building surface partly depends on the shapo of the surfaceand the dimension of the building. This part of desisn knowledge can not bedirectly used in CAD systems.It must be prucesaed in order to autogenerate thewind load on a building for the niechanical analysis of the building structure.The article presents the formalization of design knowledge about wind load onbuildings. A mathematical model for the plane seonietrical contour of buildingstructure is established. The map relationship between the shape, dimension ofbuilding and wind load coefficient of building shape is numerically depicted.Therefore, the autogeneration of wind load on building structure isaccomplished. The data structure and algorithm related to the accomplishmentare also described in details.
基金supported by Innovation Fund Program of China Electric Power Research Institute(NY83-19-003)
文摘Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.
文摘This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint connection. The joint consists of a chord and two braces in a single plane. The two braces are fully overlapped with a short segment of the diagonal brace welded directly onto the chord. The characteristic feature of this joint configuration is that the short segment member can be designed to absorb and dissipate energy under cyclic load excitation. The experimental and numerical study revealed that the completely overlapped joint performed better in terms of strength resistance, stiffness, ductility, and energy absorption capacity than the conventional gap joints commonly found in typical X-braced jacket framings. The eccentric jacket could also be designed to becoming less stiff, with an inelastic yielding and local buckling of short segment member, so as to better resist the cyclic load generated from intense environmental forces and earthquake. From the design economics, the eccentric jacket provided a more straightforward fabrication with reduced number of welded joints and shorter thicker wall cans than the conventional X-braced jacket. It can therefore be concluded based on the results presented in the study that by designing the short segment member in accordance with strength and ductility requirement,the eccentric jacket substructure supporting the wind turbine could be made to remain stable under gravity loads and to sustain a significantly large amount of motion in the event of rare and intense earthquake or environmental forces, without collapsing.
文摘巡检机器人在风载荷作用下会发生一定的摆动,从而导致巡检结果准确性和可靠性降低,参考旋翼类飞行器设计了巡检机器人在风载荷下的平衡机构.首先,利用电机的动力学方程推导电机电压和转速之间的传递函数,使用叶素法建立旋翼产生的升力与旋翼转速之间的关系,从而建立平衡机构的输入电压和输出升力之间的联系.其次,分析不同方向的风载荷对巡检机器人工作状态的影响,建立了巡检机器人在横向风载荷下的摆动数学模型.最后,将模糊PID(proportional integral derivative)应用于平衡机构的控制中,开展了巡检机器人的数值仿真和样机实验.结果表明:所设计的平衡机构可以有效抑制巡检机器人在风载荷中的摆动.