B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treat...B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treatment.The microstructural evolution and mechanical properties were investigated.Results showed that the status of B4C particles changed from a network after SPS to a dispersion distribution after HER.The substructured grains reached 66.5%owing to the pinning effect of nano-sized B4C,and the grain size was refined from 3.12μm to 1.56μm after HER.After T6 treatment,dispersed Mg_(2)Si precipitated phases formed,and the grain size increased to 1.87μm.Fine recrystallized grains around micro-sized B4C were smaller than those in the areas with uniform distribution of nano-sized B4C and Mg_(2)Si.The stress distributions of as-rolled and heated composites were similar,considering that the T6 heat treatment was only effective in eliminating the first internal stress.The Vickers,microhardness,and tensile strength of as-SPSed composites were greatly improved from HV 55.45,0.86 GPa,and 180 MPa to HV 77.51,1.08 GPa,and 310 MPa,respectively.Despite the precipitation strengthening,the corresponding values of as-heated composites decreased to HV 70.82,0.85 GPa,and 230 MPa owing to grain coarsening.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
基金Projects(51775366,51805358)supported by the National Natural Science Foundation of ChinaProject(20130321024)supported by the Key Science and Technology Program of Shanxi Province,China。
文摘B4C/6061Al composites reinforced with nano-to micrometer-sized B4C particles were fabricated via powder metallurgy route consisting of spark plasma sintering(SPS)and hot extrusion and rolling(HER),followed by T6 treatment.The microstructural evolution and mechanical properties were investigated.Results showed that the status of B4C particles changed from a network after SPS to a dispersion distribution after HER.The substructured grains reached 66.5%owing to the pinning effect of nano-sized B4C,and the grain size was refined from 3.12μm to 1.56μm after HER.After T6 treatment,dispersed Mg_(2)Si precipitated phases formed,and the grain size increased to 1.87μm.Fine recrystallized grains around micro-sized B4C were smaller than those in the areas with uniform distribution of nano-sized B4C and Mg_(2)Si.The stress distributions of as-rolled and heated composites were similar,considering that the T6 heat treatment was only effective in eliminating the first internal stress.The Vickers,microhardness,and tensile strength of as-SPSed composites were greatly improved from HV 55.45,0.86 GPa,and 180 MPa to HV 77.51,1.08 GPa,and 310 MPa,respectively.Despite the precipitation strengthening,the corresponding values of as-heated composites decreased to HV 70.82,0.85 GPa,and 230 MPa owing to grain coarsening.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.