Diamond grits held in metal matrix(sintered or electroplated) are retained primary by mechanical locking.Because of this weak attachment,the pullouts of diamond from matrix are inevitable during the cutting process.Mo...Diamond grits held in metal matrix(sintered or electroplated) are retained primary by mechanical locking.Because of this weak attachment,the pullouts of diamond from matrix are inevitable during the cutting process.Moreover,the working grits have low protrusion heights,so the cutting speed of the tool is limited. Furthermore,the rubbing of metal matrix and the work object can cause thermal damages of diamond and other materials,and power increase for the operation. Diamond can be firmly held in a metal matrix by brazing.Because of the presence of strong chemical bonding,diamond grits can protrude twice as high without being knocked off from the matrix.As a result,the cutting speed of the tool may be doubled. When the braze melts,the carbide formers will migrate toward diamond to form carbide at the interface. This reaction may be excessive as to degrade diamond significantly.In this case,a coating on diamond may be needed to moderate the reaction. When diamond is brazed on the surface of a substrate,the melt tends to pull the grits closer together that may thicken the braze layer locally.The clustering of grits can reduce the cutting effectiveness of the diamond tool.A diamond grid design is necessary to maintain the uniform thickness of the braze layer.Moreover,the controlled melting of braze alloy can form a gentle slope around each diamond grit.Such a massive support can allow aggressive cutting of the diamond tool with a low power consumption.展开更多
The aim of this research study was to determine optimal resistance spot brazing parameters for joining between AHSS and AISI 304 stainless steel by using filler metal. The key parameters investigated in this study con...The aim of this research study was to determine optimal resistance spot brazing parameters for joining between AHSS and AISI 304 stainless steel by using filler metal. The key parameters investigated in this study consist of the brazing current, electrode pressure and brazing time. The Taguchi method was applied to the design of experiments. Signal-to-Noise ratio was introduced in the study to identify optimal levels from the process where input parameters yield increased shear strength. Brazing was thus implemented with 5,000A brazing current, 0.70 MPa electrode pressure, and 1.50s brazing time. The maximum shear strength obtained was 54.31 N·mm^-2 in accordance with input parameter settings. In addition, Cu-rich phase and Ag0.4Fe0.6 intermetallic phases were found at the interface zone.展开更多
In order to investigate the effects of brazing temperature, heating rate and cooling methods on shear strength, hardness, magnetic saturation and coercivity of the ultrafine cemented carbide, the ultrafine cemented ca...In order to investigate the effects of brazing temperature, heating rate and cooling methods on shear strength, hardness, magnetic saturation and coercivity of the ultrafine cemented carbide, the ultrafine cemented carbide was fabricated according to conventional powder metallurgical procedures, and then brazed to the stainless steel with silver-based filler alloy by supersonic frequency induction brazing. The microstructure was observed using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and the magnetic properties were tested utilizing coercimeter and cobalt magnetism instrument. The results show that no micro-crack is found in the cemented carbide after brazing because of silver-based sandwich compound used as filler alloy. In the melted silver layer, there is more carbon in the region adjacent to the cemented carbide. Varied shear strengths, hardnesses, magnetic saturations and coercivities are present under different brazing temperatures, heating rates and coolings. This phenomenon is correlated with some factors such as wettability and fluidity of filler alloy, brazing stress, oxidation of cemented carbide, and allotrope transition of cobalt. Shear strength reaches the maximum of 340 MPa and hardness of ultrafine cemented carbide remains 1879 HV at the brazing temperature of 730℃. The carbon increases with the of increase of the heating rate. What's more, and there is no r/phase found under this condition. content decreases with the increase of brazing temperature, and it the lowest magnetic saturation reaches 81.8% of the theoretic value,展开更多
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed...To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.展开更多
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ...One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.展开更多
Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope (OM) and an...Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope (OM) and an S-4700 scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and an electron probe X-ray microanalyzer (EPMA). The structure of joint interface was identified by XRD (JDX-3530M). Meanwhile, the fracture paths of the joints were comprehensively studied. The results show that processing parameters, especially the brazing temperature, have a significant effect on the microstructure and mechanical properties of joints. The typical interface structure is SiO2/Ti2O+Zr3Si2+Ti5Si3/(Ti,Zr)+Ti2O+ TiZrNiCu/Ti(s.s)/TiZrNiCu+Ti(s.s)+Ti2(Cu,Ni)/TC4 from SiO2 glass ceramic to TC4 alloy side. Based on the mechanical property tests, the joints brazed at 880 ℃ for 5 rain has the maximum shear strength of 23 MPa.展开更多
Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron micros...Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.展开更多
Diamond grits may be thermally weakened during the high temperature cycle of brazing.This weakening may exhibit as diamond breakage.During the dressing action,taller diamond grits are more likely to break due to the h...Diamond grits may be thermally weakened during the high temperature cycle of brazing.This weakening may exhibit as diamond breakage.During the dressing action,taller diamond grits are more likely to break due to the higher stress present.展开更多
There are shown the wide possibilities of combined micro plasma welding methods. They permit, for example, to do the local surfacing without essential deformations of rather thin jewelry elements, including a big grow...There are shown the wide possibilities of combined micro plasma welding methods. They permit, for example, to do the local surfacing without essential deformations of rather thin jewelry elements, including a big growth a rise or layer of metal which exceeds it thickness in 2~8 times at the space with the approximately the same sizes. Such opportunities are based on the various possibilities of the joint producing-with different participation of metal parts and filler material. It may be added as a standard paste, wire, strip, etc. An operator can easy choose-where it is reasonable to apply only welding or brazing process as well as their combinations-due to his qualification, the concrete jewelry good design, needed accuracy of the given joint adjustment and, of course, the operators fantasy. At the same time he has excellentchances to repair the spoiled jewelry good or its element. All these processes are very easy for realization and theymay be even made by beginners and not only in jewelry, but also forrepairing of copper tubes, brass heat exchangers, various bronze goods, in dental purposes.展开更多
文摘Diamond grits held in metal matrix(sintered or electroplated) are retained primary by mechanical locking.Because of this weak attachment,the pullouts of diamond from matrix are inevitable during the cutting process.Moreover,the working grits have low protrusion heights,so the cutting speed of the tool is limited. Furthermore,the rubbing of metal matrix and the work object can cause thermal damages of diamond and other materials,and power increase for the operation. Diamond can be firmly held in a metal matrix by brazing.Because of the presence of strong chemical bonding,diamond grits can protrude twice as high without being knocked off from the matrix.As a result,the cutting speed of the tool may be doubled. When the braze melts,the carbide formers will migrate toward diamond to form carbide at the interface. This reaction may be excessive as to degrade diamond significantly.In this case,a coating on diamond may be needed to moderate the reaction. When diamond is brazed on the surface of a substrate,the melt tends to pull the grits closer together that may thicken the braze layer locally.The clustering of grits can reduce the cutting effectiveness of the diamond tool.A diamond grid design is necessary to maintain the uniform thickness of the braze layer.Moreover,the controlled melting of braze alloy can form a gentle slope around each diamond grit.Such a massive support can allow aggressive cutting of the diamond tool with a low power consumption.
基金express deep gratitude and sincere appreciation to the National Research Council of Thailand(NRCT under contract number A104/2017 for the financial support of this research
文摘The aim of this research study was to determine optimal resistance spot brazing parameters for joining between AHSS and AISI 304 stainless steel by using filler metal. The key parameters investigated in this study consist of the brazing current, electrode pressure and brazing time. The Taguchi method was applied to the design of experiments. Signal-to-Noise ratio was introduced in the study to identify optimal levels from the process where input parameters yield increased shear strength. Brazing was thus implemented with 5,000A brazing current, 0.70 MPa electrode pressure, and 1.50s brazing time. The maximum shear strength obtained was 54.31 N·mm^-2 in accordance with input parameter settings. In addition, Cu-rich phase and Ag0.4Fe0.6 intermetallic phases were found at the interface zone.
基金Project(2013GZX0146)supported by the Science and Technology Projects of Sichuan Province,ChinaProject(11DXYB096JH-027)supported by Chengdu Science and technology Program,China
文摘In order to investigate the effects of brazing temperature, heating rate and cooling methods on shear strength, hardness, magnetic saturation and coercivity of the ultrafine cemented carbide, the ultrafine cemented carbide was fabricated according to conventional powder metallurgical procedures, and then brazed to the stainless steel with silver-based filler alloy by supersonic frequency induction brazing. The microstructure was observed using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and the magnetic properties were tested utilizing coercimeter and cobalt magnetism instrument. The results show that no micro-crack is found in the cemented carbide after brazing because of silver-based sandwich compound used as filler alloy. In the melted silver layer, there is more carbon in the region adjacent to the cemented carbide. Varied shear strengths, hardnesses, magnetic saturations and coercivities are present under different brazing temperatures, heating rates and coolings. This phenomenon is correlated with some factors such as wettability and fluidity of filler alloy, brazing stress, oxidation of cemented carbide, and allotrope transition of cobalt. Shear strength reaches the maximum of 340 MPa and hardness of ultrafine cemented carbide remains 1879 HV at the brazing temperature of 730℃. The carbon increases with the of increase of the heating rate. What's more, and there is no r/phase found under this condition. content decreases with the increase of brazing temperature, and it the lowest magnetic saturation reaches 81.8% of the theoretic value,
基金Supports from the National Natural Science Foundation of China(Grant No.12272094,No.52205185 and No.51975123)the Natural Science Foundation of Fujian Province of China(Grant No.2022J01541 and No.2020J05102)the Key Project of National Defence Innovation Zone of Science and Technology Commission of CMC(Grant No.XXX-033-01)。
文摘To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.
文摘One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.
基金Project(50705022) supported by the National Natural Science Foundation of ChinaProject(HIT0804) supported by the Foundation of the National Key Laboratory of Precision Hot Processing of Metals,ChinaProject supported by Program of Excellent Team in Harbin Institute of Technology,China
文摘Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope (OM) and an S-4700 scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and an electron probe X-ray microanalyzer (EPMA). The structure of joint interface was identified by XRD (JDX-3530M). Meanwhile, the fracture paths of the joints were comprehensively studied. The results show that processing parameters, especially the brazing temperature, have a significant effect on the microstructure and mechanical properties of joints. The typical interface structure is SiO2/Ti2O+Zr3Si2+Ti5Si3/(Ti,Zr)+Ti2O+ TiZrNiCu/Ti(s.s)/TiZrNiCu+Ti(s.s)+Ti2(Cu,Ni)/TC4 from SiO2 glass ceramic to TC4 alloy side. Based on the mechanical property tests, the joints brazed at 880 ℃ for 5 rain has the maximum shear strength of 23 MPa.
基金Project(50705022) supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University
文摘Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.
文摘Diamond grits may be thermally weakened during the high temperature cycle of brazing.This weakening may exhibit as diamond breakage.During the dressing action,taller diamond grits are more likely to break due to the higher stress present.
文摘There are shown the wide possibilities of combined micro plasma welding methods. They permit, for example, to do the local surfacing without essential deformations of rather thin jewelry elements, including a big growth a rise or layer of metal which exceeds it thickness in 2~8 times at the space with the approximately the same sizes. Such opportunities are based on the various possibilities of the joint producing-with different participation of metal parts and filler material. It may be added as a standard paste, wire, strip, etc. An operator can easy choose-where it is reasonable to apply only welding or brazing process as well as their combinations-due to his qualification, the concrete jewelry good design, needed accuracy of the given joint adjustment and, of course, the operators fantasy. At the same time he has excellentchances to repair the spoiled jewelry good or its element. All these processes are very easy for realization and theymay be even made by beginners and not only in jewelry, but also forrepairing of copper tubes, brass heat exchangers, various bronze goods, in dental purposes.