期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
叶绿素含量BP反演模型的光谱信息输入因子构建研究
被引量:
3
1
作者
杨可明
孙阳阳
+2 位作者
刘飞
魏华锋
史钢强
《科学技术与工程》
北大核心
2015年第15期82-87,共6页
植被叶绿素含量的高光谱反演是当今研究的热点,传统后向传播(BP)神经网络是其常用的一种反演模型。高光谱数据虽然具有精细光谱分辨率,但也造成了大量的信息冗余与噪声;而小波包变换(WPT)可以有效地抑制高光谱数据噪声和压缩信号,同时...
植被叶绿素含量的高光谱反演是当今研究的热点,传统后向传播(BP)神经网络是其常用的一种反演模型。高光谱数据虽然具有精细光谱分辨率,但也造成了大量的信息冗余与噪声;而小波包变换(WPT)可以有效地抑制高光谱数据噪声和压缩信号,同时主成分分析(PCA)能够很好地降低模型输入因子的维数并可简化网络结构。以盆栽玉米为研究对象,在玉米叶片光谱数据对数变换并一阶微分处理的基础上,针对叶绿素含量的BP反演模型,提出了基于相关系数(CC)、WPT和WPTPCA的输入因子构建方法,并形成了叶绿素含量的CC-BP、PCA-BP及WPT-PCA-BP三种反演模型。通过比较玉米叶片叶绿素含量的实测值与三种BP模型反演结果,表明基于WPT-PCA构建BP模型的输入因子数量虽仅有6个却并不影响其反演精度,也能包含原始光谱的92%信息,且优于基于PCA和传统CC所构建输入因子的BP模型反演能力。
展开更多
关键词
高光谱遥感
叶绿素含量
bp反演模型
输入因子
小波包变换
主成分分析
在线阅读
下载PDF
职称材料
基于光谱特征参数与主成分分析的玉米叶片叶绿素含量BP反演
被引量:
2
2
作者
杨可明
卓伟
+2 位作者
刘二雄
汪国平
夏天
《江苏农业科学》
北大核心
2016年第7期147-150,共4页
利用美国SVC HR-1024I型地物光谱仪对盆栽玉米叶片进行光谱测定,同时用SPAD-502叶绿素仪测定叶片的叶绿素含量。基于实测光谱的微分处理结果,获取光谱位置、光谱面积、植被指数3个方面的11个光谱特征参数(spectral characteristic param...
利用美国SVC HR-1024I型地物光谱仪对盆栽玉米叶片进行光谱测定,同时用SPAD-502叶绿素仪测定叶片的叶绿素含量。基于实测光谱的微分处理结果,获取光谱位置、光谱面积、植被指数3个方面的11个光谱特征参数(spectral characteristic parameters,SCP),分析这11个SCPs与叶绿素含量的相关性,并对这些参数进行主成分分析(principal component analysis,PCA);然后,利用这11个SCPs及其PCA结果建立误差反向传播(error back propagation,BP)神经网络输入因子,并构建了玉米叶片叶绿素含量BP反演模型(简称SCP-PCA-BP模型)。另外,选取与叶绿素含量相关性较高的8个SCP,建立常规的线性回归模型并预测叶绿素含量。反演结果表明:SCP-PCA-BP反演的预测值与实测值之间的决定系数(r2)达到0.968 7,均方根误差(RMSE)为0.893 9;而用线性回归模型反演时,只有基于SCP中微分光谱蓝边面积、面积比值、归一化面积参数的预测效果较好,其中归一化面积的预测效果最好,预测值与实测值之间r2为0.704 0,RMSE为2.895。因此可知,与常规的线性回归模型相比,SCP-PCA-BP反演模型在预测玉米叶片叶绿素方面具有更好的预测效果。
展开更多
关键词
光谱特征参数
主成分分析
玉米叶片
bp
神经网络
叶绿素含量
bp反演模型
在线阅读
下载PDF
职称材料
题名
叶绿素含量BP反演模型的光谱信息输入因子构建研究
被引量:
3
1
作者
杨可明
孙阳阳
刘飞
魏华锋
史钢强
机构
中国矿业大学(北京)地球科学与测绘工程学院
出处
《科学技术与工程》
北大核心
2015年第15期82-87,共6页
基金
国家自然科学基金项目(41271436)
中央高校基本科研业务费专项资金(2009QD02)资助
文摘
植被叶绿素含量的高光谱反演是当今研究的热点,传统后向传播(BP)神经网络是其常用的一种反演模型。高光谱数据虽然具有精细光谱分辨率,但也造成了大量的信息冗余与噪声;而小波包变换(WPT)可以有效地抑制高光谱数据噪声和压缩信号,同时主成分分析(PCA)能够很好地降低模型输入因子的维数并可简化网络结构。以盆栽玉米为研究对象,在玉米叶片光谱数据对数变换并一阶微分处理的基础上,针对叶绿素含量的BP反演模型,提出了基于相关系数(CC)、WPT和WPTPCA的输入因子构建方法,并形成了叶绿素含量的CC-BP、PCA-BP及WPT-PCA-BP三种反演模型。通过比较玉米叶片叶绿素含量的实测值与三种BP模型反演结果,表明基于WPT-PCA构建BP模型的输入因子数量虽仅有6个却并不影响其反演精度,也能包含原始光谱的92%信息,且优于基于PCA和传统CC所构建输入因子的BP模型反演能力。
关键词
高光谱遥感
叶绿素含量
bp反演模型
输入因子
小波包变换
主成分分析
Keywords
hyperspectral RS chlorophyll content
bp
inversing model input factors waveletpackets transform principal component analysis
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
基于光谱特征参数与主成分分析的玉米叶片叶绿素含量BP反演
被引量:
2
2
作者
杨可明
卓伟
刘二雄
汪国平
夏天
机构
中国矿业大学(北京)地球科学与测绘工程学院
出处
《江苏农业科学》
北大核心
2016年第7期147-150,共4页
基金
国家自然科学基金(编号:41271436)
中央高校基本科研业务费专项资金(编号:2009QD02)
文摘
利用美国SVC HR-1024I型地物光谱仪对盆栽玉米叶片进行光谱测定,同时用SPAD-502叶绿素仪测定叶片的叶绿素含量。基于实测光谱的微分处理结果,获取光谱位置、光谱面积、植被指数3个方面的11个光谱特征参数(spectral characteristic parameters,SCP),分析这11个SCPs与叶绿素含量的相关性,并对这些参数进行主成分分析(principal component analysis,PCA);然后,利用这11个SCPs及其PCA结果建立误差反向传播(error back propagation,BP)神经网络输入因子,并构建了玉米叶片叶绿素含量BP反演模型(简称SCP-PCA-BP模型)。另外,选取与叶绿素含量相关性较高的8个SCP,建立常规的线性回归模型并预测叶绿素含量。反演结果表明:SCP-PCA-BP反演的预测值与实测值之间的决定系数(r2)达到0.968 7,均方根误差(RMSE)为0.893 9;而用线性回归模型反演时,只有基于SCP中微分光谱蓝边面积、面积比值、归一化面积参数的预测效果较好,其中归一化面积的预测效果最好,预测值与实测值之间r2为0.704 0,RMSE为2.895。因此可知,与常规的线性回归模型相比,SCP-PCA-BP反演模型在预测玉米叶片叶绿素方面具有更好的预测效果。
关键词
光谱特征参数
主成分分析
玉米叶片
bp
神经网络
叶绿素含量
bp反演模型
分类号
TP75 [自动化与计算机技术—检测技术与自动化装置]
S127 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
叶绿素含量BP反演模型的光谱信息输入因子构建研究
杨可明
孙阳阳
刘飞
魏华锋
史钢强
《科学技术与工程》
北大核心
2015
3
在线阅读
下载PDF
职称材料
2
基于光谱特征参数与主成分分析的玉米叶片叶绿素含量BP反演
杨可明
卓伟
刘二雄
汪国平
夏天
《江苏农业科学》
北大核心
2016
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部