期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
BP⁃GA算法确定未反应炸药的JWL状态方程参数 被引量:3
1
作者 崔浩 郭锐 +5 位作者 宋浦 顾晓辉 周昊 杨永亮 江琳 俞旸晖 《含能材料》 EI CAS CSCD 北大核心 2022年第1期43-49,共7页
为了确定未反应炸药的JWL状态方程参数,提出了一种利用BP神经网络‑遗传算法(BP‑GA算法)和冲击Hugoniot关系确定JWL参数的方法。此方法首先训练BP神经网络,使其可以拟合由不同的JWL参数组合组成的非线性系统,随后采用遗传算法搜寻适应度... 为了确定未反应炸药的JWL状态方程参数,提出了一种利用BP神经网络‑遗传算法(BP‑GA算法)和冲击Hugoniot关系确定JWL参数的方法。此方法首先训练BP神经网络,使其可以拟合由不同的JWL参数组合组成的非线性系统,随后采用遗传算法搜寻适应度值最大的一组JWL参数。结果表明:已知某种炸药的初始密度、爆速、Hugoniot系数C0和S,便可利用BP‑GA算法确定其JWL参数;BP‑GA算法确定的8种未反应炸药的p‑v曲线和由试验数据确定的p‑v曲线相吻合,且8条p‑v曲线的R^(2)均不低于0.9995,证明了BP‑GA算法的高精度。 展开更多
关键词 bp‑ga算法 未反应炸药:JWL状态方程 冲击Hugoniot
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure ga-bp hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部