期刊文献+
共找到498篇文章
< 1 2 25 >
每页显示 20 50 100
改进SSA优化BP神经网络的变压器故障诊断 被引量:2
1
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
PCA-BP神经网络模型在拖拉机发动机故障诊断中的应用
2
作者 杨健 《农机化研究》 北大核心 2025年第3期254-258,共5页
拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(... 拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(PCA)算法对拖拉机发动机的传感器数据进行降维处理,并使用BP神经网络对降维后的数据进行分类识别,以实现拖拉机发动机故障的诊断。试验结果表明:PCA-BP神经网络模型可以准确地诊断拖拉机发动机的多种故障,相比于传统的BP神经网络模型,具有更高的准确率和更好的泛化能力,表明PCA-BP神经网络模型在拖拉机发动机故障诊断中具有较大的应用前景。 展开更多
关键词 拖拉机发动机 故障诊断 主成分分析 bp神经网络
在线阅读 下载PDF
改进KPCA结合多目标蜻蜓算法优化BP神经网络的联合收割机故障诊断
3
作者 孟桐 雷鸣 +2 位作者 宋文广 王丹丹 黄梦可 《机电工程》 北大核心 2025年第7期1258-1267,共10页
针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性... 针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性,能够有效捕捉收割机的瞬态变化与局部异常,从而提取出了不同工况下的主要成分,降低了数据维度,减少了冗余信息;其次,针对传统蜻蜓算法的局限性,引入了自适应变异策略、非线性惯性权重及动态收敛因子,构建了多目标蜻蜓算法,对Schaffer、Michalewicz和Rastrigin函数进行了求解,验证了MTDA能显著提升全局与局部搜索平衡能力;最后,利用MTDA对BP神经网络的权值和阈值进行了优化,构建了MTDA-BP综合故障诊断模型,将模型应用于联合收割机的故障诊断中,通过实验验证了其有效性。研究结果表明:故障诊断平均精度达到96.7%,通过与当前主流方法的实验对比分析,采用Micro-average ROC进行了模型评价,结果显示该模型的曲线下面积(AUC)为0.967。实验结果充分证明了该模型在检测精确度与泛化性方面均具有显著优势,该研究也为解决智能农业机械中的诊断提供了一种有效的方法。 展开更多
关键词 核主成分分析 MORLET小波 多目标蜻蜓算法 反向传播神经网络 联合收割机 故障诊断
在线阅读 下载PDF
基于IWOA-BP的火控计算机电源模块故障诊断方法 被引量:1
4
作者 邵浩冬 李英顺 +1 位作者 王德彪 佟维妍 《兵器装备工程学报》 北大核心 2025年第3期224-231,共8页
火控计算机是火控系统的核心,其对于火控系统的正常运行发挥着重要作用,因此对坦克火控计算机电源模块进行故障诊断是一项很重要的任务。为了提高诊断准确率和效率,引入了Sine-Tent-Cosine混沌映射和自适应惯性权重对原始的鲸鱼算法(WOA... 火控计算机是火控系统的核心,其对于火控系统的正常运行发挥着重要作用,因此对坦克火控计算机电源模块进行故障诊断是一项很重要的任务。为了提高诊断准确率和效率,引入了Sine-Tent-Cosine混沌映射和自适应惯性权重对原始的鲸鱼算法(WOA)进行改进与优化,利用改进后的算法对BP神经网络的权重、阈值进行参数寻优,构建了IWOA-BP火控计算机电源模块故障诊断模型,与PSO-BP、ANT-BP、WOA-BP几种诊断模型进行实验对比。多次实验结果表明:改进后的IWOA-BP模型在4种模型中效率最高,运行时间仅为8.72 s,在对火控计算机电源模块的5种故障进行诊断时,该模型的平均准确率达到了96.4%,相较于PSO-BP、ANT-BP和WOA-BP几种诊断模型准确率分别提升了3.65%、5.7%和5.93%。 展开更多
关键词 故障诊断 鲸鱼优化算法 Sine-Tent-Cosine混沌映射 自适应惯性权重 bp神经网络
在线阅读 下载PDF
基于BP神经网络的工程机械液压系统自动故障诊断研究
5
作者 曾行健 丁悦 +1 位作者 汤清源 白龙 《机床与液压》 北大核心 2025年第2期165-170,共6页
工程机械液压系统由于结构复杂而不可避免地出现故障,常规检测方法为人工检测,但检测过程费时费力。针对此问题,对工程机械液压系统进行建模及简化,并结合BP神经网络学习故障数据。在管路系统中安装压力和流量监测仪以跟踪数据,通过调... 工程机械液压系统由于结构复杂而不可避免地出现故障,常规检测方法为人工检测,但检测过程费时费力。针对此问题,对工程机械液压系统进行建模及简化,并结合BP神经网络学习故障数据。在管路系统中安装压力和流量监测仪以跟踪数据,通过调整选定元件的参数来模拟故障情况,记录监测仪的数据并进行整理,采用主成分分析法进行信息抽取和降维,并作为神经网络的输入。同时,手动标注元器件的当前状态作为训练标签。对每个元件均构建了一个独立的神经网络模型,用于学习输入数据与标签之间的关系。结果显示:阀和泵的准确率分别达到98.61%和96.52%,表明模型的准确率较高,可实现工程机械液压模型的自动故障诊断。 展开更多
关键词 bp神经网络 故障诊断 工程机械液压系统
在线阅读 下载PDF
基于改进GA-BP神经网络的FDM式3D打印机故障诊断
6
作者 殷冬年 解乃军 纪有旺 《印刷与数字媒体技术研究》 北大核心 2025年第4期169-181,共13页
针对当前FDM(Fused Deposition Modeling)式3D打印机故障诊断方式存在精确度低、灵活性不足等缺陷,本研究提出了一种基于改进GA-BP神经网络的FDM式3D打印机故障诊断模型。通过分析影响打印故障的因素,得出故障诊断模型的输入变量,以此构... 针对当前FDM(Fused Deposition Modeling)式3D打印机故障诊断方式存在精确度低、灵活性不足等缺陷,本研究提出了一种基于改进GA-BP神经网络的FDM式3D打印机故障诊断模型。通过分析影响打印故障的因素,得出故障诊断模型的输入变量,以此构建BP神经网络模型;针对BP学习算法易陷入局部最优解问题,利用遗传算法优化网络的初始权值和阈值,并进一步结合遗传进化原理,改进了遗传算法自适应交叉和变异概率策略。通过实验结果分析,本研究所提的基于改进GA-BP神经网络的3D打印机故障诊断模型的诊断准确率在97%以上,比基于BP神经网络的基础诊断模型的诊断准确率提升了12.9%,迭代次数减少了22次,比传统阈值检测法的诊断准确率提升了24.3%。 展开更多
关键词 FDM式3D打印机 故障诊断 bp神经网络 遗传算法 自适应交叉和变异概率
在线阅读 下载PDF
基于改进蚁狮算法优化BP的轴承故障诊断
7
作者 王妍 于浩文 +2 位作者 凌丹 梁恩豪 王新发 《计算机集成制造系统》 北大核心 2025年第4期1259-1271,共13页
为了准确高效地对滚动轴承的健康状态进行诊断,提出一种基于改进蚁狮优化(IALO)算法优化BP神经网络的滚动轴承故障诊断模型。在IALO算法中,采用变异算子,增强了种群的多样性;采用动态比例系数和非线性动态权重,平衡了迭代过程中不同时... 为了准确高效地对滚动轴承的健康状态进行诊断,提出一种基于改进蚁狮优化(IALO)算法优化BP神经网络的滚动轴承故障诊断模型。在IALO算法中,采用变异算子,增强了种群的多样性;采用动态比例系数和非线性动态权重,平衡了迭代过程中不同时期游走的权重,降低了算法陷入局部极值的可能性。基准函数测试结果表明,与其他算法相比,IALO算法具有更好的优化性能。另外,为了改善BP神经网络的分类性能,利用IALO算法优化BP神经网络的权值和阈值,构建滚动轴承故障诊断模型。帕德伯恩轴承数据集的实验结果表明,采用IALO算法优化后的BP模型具有较好的故障诊断性能。 展开更多
关键词 轴承故障诊断 蚁狮优化算法 动态比例系数 非线性动态权重 bp神经网络
在线阅读 下载PDF
基于BP神经网络和遗传算法的设备故障诊断与健康管理模型研究 被引量:4
8
作者 和征 张同静 杨小红 《制造技术与机床》 北大核心 2024年第11期9-15,共7页
针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了... 针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了设备故障诊断与健康管理模型。最后,以机电设备振动数据为例,进行设备故障诊断模型的预测结果分析,验证了该模型的可行性。研究结果表明,该模型能提高设备故障诊断正确率,具有较好的故障诊断效果;设备预测健康状态与实际健康状态的变化趋势基本保持一致,重合率大于90%。该成果可为制造企业的设备故障诊断与健康管理提供相关策略,有效排除故障问题,降低管理成本。 展开更多
关键词 设备故障诊断 设备健康管理 bp神经网络 遗传算法
在线阅读 下载PDF
基于电机电流的高压断路器弹簧操作机构的LM-BP故障诊断算法 被引量:1
9
作者 赵莉华 冀一玮 +4 位作者 吴月峥 吴迅 宁文军 黄小龙 任俊文 《电测与仪表》 北大核心 2024年第9期48-55,84,共9页
BP(back propagation)神经网络由于具有线性映射能力强及自适应能力强等优点,常被用于高压断路器弹簧操作机构的故障诊断中,但易陷入局部最小点限制了网络的收敛速度和分类精确度。文中提出了一种基于L-M算法优化BP神经网络的高压断路... BP(back propagation)神经网络由于具有线性映射能力强及自适应能力强等优点,常被用于高压断路器弹簧操作机构的故障诊断中,但易陷入局部最小点限制了网络的收敛速度和分类精确度。文中提出了一种基于L-M算法优化BP神经网络的高压断路器操作机构故障诊断方法,分析了神经网络的数学模型及映射关系,运用L-M算法对传统BP网络进行优化,解决了传统BP神经网络梯度下降法存在局部最小化、易产生平坦区等问题,有效地提高了算法的训练速度,同时提高了分类的精确度。诊断结果表明:L-M算法优化后的BP神经网络能有效地实现高压断路器操作机构故障诊断。文中研究内容对高压断路器操作机构故障诊断提供了思路与方法,对提高高压断路器安全可靠性具有重要意义。 展开更多
关键词 高压断路器 弹簧操作机构 分合闸电机电流特性 故障诊断 bp神经网络
在线阅读 下载PDF
基于混合采样和CAWOA-BP的变压器故障诊断 被引量:6
10
作者 李佰霖 陈昱锐 +2 位作者 褚凡武 付文龙 柯学志 《水电能源科学》 北大核心 2024年第3期216-220,共5页
为提高变压器故障诊断准确率,提出了基于混合采样技术的数据处理方法和改进鲸鱼算法优化BP神经网络的故障诊断模型。首先通过Tomek links和SMOTE对原始数据进行去噪处理及少数类数据样本合成,然后采用Cubic map混沌映射及自适应权重调... 为提高变压器故障诊断准确率,提出了基于混合采样技术的数据处理方法和改进鲸鱼算法优化BP神经网络的故障诊断模型。首先通过Tomek links和SMOTE对原始数据进行去噪处理及少数类数据样本合成,然后采用Cubic map混沌映射及自适应权重调整策略改进鲸鱼算法(WOA),利用改进后的鲸鱼算法优化BP神经网络参数;最后,利用混合采样前后的数据对传统BP神经网络、WOA-BP、CAWOA-BP三种模型进行对比仿真试验。结果表明,使用混合采样后的数据训练模型会使模型故障诊断准确率提高,且CAWOA-BP模型的表现优于传统BP神经网络和WOA-BP模型。 展开更多
关键词 变压器 故障诊断 混合采样 鲸鱼优化算法 bp神经网络
在线阅读 下载PDF
基于PSO-IBP神经网络的纯电动汽车电驱总成故障诊断
11
作者 肖伟 李泽军 +2 位作者 管天福 贺路 陈绪兵 《现代制造工程》 CSCD 北大核心 2024年第1期137-141,共5页
为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)... 为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。 展开更多
关键词 纯电动汽车 粒子群算法 bp神经网络 故障诊断
在线阅读 下载PDF
一种GA-ACO-BP模型的热网泄漏故障诊断研究 被引量:3
12
作者 郝江勇 段鹏飞 +2 位作者 杜永峰 冯梦丹 陈京磊 《太原理工大学学报》 CAS 北大核心 2024年第2期338-347,共10页
【目的】研究目前传统BP(back propagation)模型对热网泄漏故障诊断过程中存在故障识别率低、收敛速度慢以及易陷入局部极值等问题。【方法】提出了一种基于遗传蚁群(genetic algorithm-ant colony optimization,GA-ACO)算法优化的BP模... 【目的】研究目前传统BP(back propagation)模型对热网泄漏故障诊断过程中存在故障识别率低、收敛速度慢以及易陷入局部极值等问题。【方法】提出了一种基于遗传蚁群(genetic algorithm-ant colony optimization,GA-ACO)算法优化的BP模型。利用GA算法的交叉变异算子改进了信息素初始值,通过ACO算法提高了模型的迭代速度以及最优解的寻找,优化了BP模型的初始权值和阈值,并通过系统仿真软件将此模型应用到热网泄漏故障诊断中。【结果】结果表明:相比于传统BP模型和GA-BP模型,GA-ACO-BP模型具有更快的收敛速度,预测值更加接近期望值且误差更小,有效提高了热网泄漏故障的预测精度,能够实现对泄漏故障快速、准确的诊断和定位。 展开更多
关键词 热网泄漏 bp神经网络 遗传算法 蚁群算法 故障诊断
在线阅读 下载PDF
基于小波包分解与BP神经网络的制动系统电磁阀故障诊断研究 被引量:3
13
作者 孙环阳 张红光 +1 位作者 薛明晨 鹿峰凯 《铁道机车车辆》 北大核心 2024年第5期39-45,共7页
针对轨道车辆制动控制系统中电磁阀故障识别困难的问题,提出了一种基于小波包分解与BP神经网络的电磁阀故障诊断方法。该方法首先将原始信号进行小波包分解;然后对分解后的小波包系数进行特征提取;最后采用BP神经网络算法对不同故障提... 针对轨道车辆制动控制系统中电磁阀故障识别困难的问题,提出了一种基于小波包分解与BP神经网络的电磁阀故障诊断方法。该方法首先将原始信号进行小波包分解;然后对分解后的小波包系数进行特征提取;最后采用BP神经网络算法对不同故障提取出的特征进行诊断。为了验证该方法的有效性,基于Simulink进行了仿真验证,仿真结果表明:该方法通过了仿真验证,从理论上证明了该方法可行。在此基础上,进一步开展了实物验证,通过对比真实的正常电磁阀、阀芯卡滞电磁阀、弹簧失效电磁阀,实物验证结果从工程实现方面进一步说明了文中提出方法的有效性,能够实现制动系统电磁阀故障诊断。 展开更多
关键词 制动系统 电磁阀 故障诊断 小波包分解 bp神经网络
在线阅读 下载PDF
HVD分解和GA-BP神经网络结合的井架钢结构损伤识别
14
作者 朱国庆 韩东颖 +3 位作者 黄岩 李岳峰 李可欣 葛文泰 《噪声与振动控制》 CSCD 北大核心 2024年第2期108-113,共6页
针对井架钢结构冲击载荷振动信号非线性、非平稳性对损伤识别的干扰问题,提出了一种基于希尔伯特振动分解(Hilbert Vibration Decomposition,HVD)与遗传算法优化的神经网络(Genetic BP Neural Networks,GA-BP)相结合的智能故障诊断方法... 针对井架钢结构冲击载荷振动信号非线性、非平稳性对损伤识别的干扰问题,提出了一种基于希尔伯特振动分解(Hilbert Vibration Decomposition,HVD)与遗传算法优化的神经网络(Genetic BP Neural Networks,GA-BP)相结合的智能故障诊断方法。首先,利用HVD分解的方法处理冲击载荷作用下的加速度非平稳振动信号;其次,由斯皮尔曼相关系数选取HVD分解后的最优(Intrinsic Mode Function,IMF)分量,以最优IMF分量能量变化率构造特征向量;最后,通过特征向量建立数据集进行神经网络训练,完成信号的特征学习和故障分类。利用ZJ70型井架钢结构模型进行冲击载荷作用下的单处损伤和多处损伤的不同工况实验验证,结果表明:对于单处损伤位置识别率达到90%,多处损伤位置识别率高达96%,利用HVD分解与GA-BP神经网络相结合的方法具有较好的稳定性,能够准确判断出井架钢结构损伤位置,具有一定的实际应用价值。 展开更多
关键词 故障诊断 HVD分解 GA-bp神经网络 冲击载荷 井架钢结构 损伤识别
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断
15
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子群优化反向传播神经网络 神经网络集成群
在线阅读 下载PDF
基于卷积神经网络与图卷积网络的水力机械故障诊断 被引量:1
16
作者 吴学春 夏臣智 +4 位作者 肖湘曲 李超顺 李英玉 莫兆祥 吴韬为 《中国农村水利水电》 北大核心 2025年第2期143-147,共5页
水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械... 水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械设备监测信号卷积深度特征,同时利用快速傅里叶变换获取监测信号频谱值,构建监测信号图数据,建立图卷积网络提取样本关联特征。然后利用注意力机制对不同类型特征进行加权求和实现多模态特征融合。最后利用全连接层实现设备的故障诊断。通过水电机组、水泵主机组故障实测数据以及轴承故障数据进行验证,结果表明所提模型能有效实现水力机械设备故障诊断。 展开更多
关键词 水力机械 卷积神经网络 图卷积网络 故障诊断
在线阅读 下载PDF
基于BP神经网络的光伏阵列故障诊断研究 被引量:85
17
作者 王元章 吴春华 +2 位作者 周笛青 付立 李智华 《电力系统保护与控制》 EI CSCD 北大核心 2013年第16期108-114,共7页
光伏阵列多安装在较恶劣的室外环境中,因此在运行过程中常会发生故障。为辨别光伏阵列故障类型,提出了基于L-M算法的BP神经网络的故障诊断方法。在深入分析不同故障状态下光伏阵列输出量变化规律的基础上,确定了故障诊断模型的输入变量... 光伏阵列多安装在较恶劣的室外环境中,因此在运行过程中常会发生故障。为辨别光伏阵列故障类型,提出了基于L-M算法的BP神经网络的故障诊断方法。在深入分析不同故障状态下光伏阵列输出量变化规律的基础上,确定了故障诊断模型的输入变量。本方法无需额外的设备支持,具有简便、成本低的优点;可以在线实时地进行故障诊断。仿真和初步实验结果验证了基于BP神经网络的故障诊断方法可以有效地检测出光伏阵列短路、断路、异常老化及局部阴影等四种故障。 展开更多
关键词 bp神经网络 光伏阵列 故障诊断 L-M算法
在线阅读 下载PDF
基于L-M算法的BP网络在变压器故障诊断中的应用 被引量:63
18
作者 项文强 张华 +1 位作者 王姮 解兴哲 《电力系统保护与控制》 EI CSCD 北大核心 2011年第8期100-103,111,共5页
针对传统BP神经网络算法在变压器故障诊断中存在的收敛速度慢、容易陷入局部极小值的问题,通过对基于Levenberg-Marquardt算法的BP神经网络进行深入研究,并最终应用于变压器故障诊断。该算法通过优化BP神经网络的搜索方向,加快了网络训... 针对传统BP神经网络算法在变压器故障诊断中存在的收敛速度慢、容易陷入局部极小值的问题,通过对基于Levenberg-Marquardt算法的BP神经网络进行深入研究,并最终应用于变压器故障诊断。该算法通过优化BP神经网络的搜索方向,加快了网络训练速度,提高了网络训练的精度。通过对实例数据仿真,证明了本方法能够有效地诊断出变压器的故障,为变压器故障诊断提供了一条新途径。 展开更多
关键词 L-M算法 bp网络 变压器 故障诊断
在线阅读 下载PDF
改进BP网络算法在配电网故障诊断中的应用研究 被引量:20
19
作者 成蓬勃 袁福科 +2 位作者 刘灿萍 梁晓剑 郭壮志 《继电器》 CSCD 北大核心 2007年第12期27-31,40,共6页
针对BP网络学习收敛速度慢和易陷入局部最小点的不足,提出利用一种自适应学习速率动量梯度下降反向传播算法对BP神经网络进行训练。该算法使BP神经网络学习速率和稳定性得到提高。将这种改进的BP网络算法应用于配电网诊断实例,用这种改... 针对BP网络学习收敛速度慢和易陷入局部最小点的不足,提出利用一种自适应学习速率动量梯度下降反向传播算法对BP神经网络进行训练。该算法使BP神经网络学习速率和稳定性得到提高。将这种改进的BP网络算法应用于配电网诊断实例,用这种改进的网络算法进行分类,采用VB语言作为开发工具调用神经网络工具箱建立了一个简化的故障诊断系统,验证了该算法的有效性、正确性。 展开更多
关键词 配电网 故障诊断 bp神经网络 VB
在线阅读 下载PDF
用可靠性数据分析及BP网络诊断变压器故障 被引量:26
20
作者 钱政 高文胜 +1 位作者 尚勇 严璋 《高电压技术》 EI CAS CSCD 北大核心 1999年第1期13-15,共3页
Based on the back progpagation neural network (BPNN) applied for transformer fault diagnosis, an improved algorithm of BPNN is introduced, and some basic conceptions of data reliability analysis are adopted to pre pro... Based on the back progpagation neural network (BPNN) applied for transformer fault diagnosis, an improved algorithm of BPNN is introduced, and some basic conceptions of data reliability analysis are adopted to pre process the input data of BPNN. The results of verification show that satisfactory accuracy and good application of this method could be acquired. 展开更多
关键词 电力变压器 故障诊断 bp网络 可靠性数据分析
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部