期刊文献+
共找到10,229篇文章
< 1 2 250 >
每页显示 20 50 100
基于介电特性和BPNN建模的小麦含水率在线检测
1
作者 姬虹 李康 +3 位作者 宋东方 王万章 李保谦 冯伟 《农机化研究》 北大核心 2025年第8期119-129,共11页
为满足小麦籽粒含水率在线检测需求,设计了一种搭载在联合收获机上基于介电特性的同侧圆弧电容式小麦籽粒含水率在线检测传感器。对6个不同品种小麦进行了温度、频率、电容、容重4个因素对含水率检测影响的实验研究,采用BP神经网络法建... 为满足小麦籽粒含水率在线检测需求,设计了一种搭载在联合收获机上基于介电特性的同侧圆弧电容式小麦籽粒含水率在线检测传感器。对6个不同品种小麦进行了温度、频率、电容、容重4个因素对含水率检测影响的实验研究,采用BP神经网络法建立了含水率与温度、频率、电容、容重4因素关系的预测模型,其训练集和测试集的决定系数R 2为0.896和0.893,均方根误差RMSE为1.317和1.342,预测模型稳定性和预测能力较强。研究表明:将温度、频率、容重这3因素引入的电容法联合收获机在线小麦含水率检测系统,能有效提高整体系统的检测精度和重复性。通过对不同小麦品种含水率检测影响因素相关性分析和数学模型的建立与优化,提高了电容法小麦含水率检测精度,为联合收获机小麦含水率检测系统中电容式传感器软硬件设计提供了理论依据。 展开更多
关键词 小麦含水率 在线检测 介电特性 bp神经网络
在线阅读 下载PDF
基于PCA-TSO-BPNN模型的海底管道内腐蚀速率预测研究 被引量:1
2
作者 肖荣鸽 刘国庆 +3 位作者 刘博 魏王颖 庄琦 靳帅帅 《热加工工艺》 北大核心 2025年第4期82-88,共7页
近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成... 近年来,随着我国海洋油气勘探开发力度不断增强,在役的和建设中的海底油气管道越来越多,海底油气管道内腐蚀速率预测对于海底油气管道的日常运行、维护和检修极为重要。为了提高海底油气管道内腐蚀速率预测精度和稳定性,建立了基于主成分分析(Principal Component Analysis,PCA)和金枪鱼群算法(Tuna Swarm Optimization,TSO)优化BP神经网络的海底管道内腐蚀速率预测组合模型PCA-TSO-BPNN。运用PCA进行数据降维,筛选出海底管道内腐蚀速率的主要影响因素;建立海底管道内腐蚀速率BPNN预测模型,并采用TSO算法对BPNN预测模型的权值和阈值参数进行寻优;利用PCA-TSO-BPNN组合模型对海底管道内腐蚀速率进行预测,并与对比模型进行比较,验证PCA-TSO-BPNN组合模型的可行性和可靠性。结果表明:PCA-TSO-BPNN组合模型的平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为1.8441%和0.06757,远低于对比模型,组合模型具有较高的预测精度和稳定性,可为海底管道内腐蚀防护和流动保障提供决策支持。 展开更多
关键词 bp神经网络 主成分分析 金枪鱼群算法 海底管道 腐蚀速率预测
在线阅读 下载PDF
基于AHP-BPNN方法的高校学生人工智能素养指标体系构建 被引量:2
3
作者 丁继红 郭丽媛 +1 位作者 张文轩 刘华中 《远程教育杂志》 北大核心 2025年第1期46-56,共11页
随着人工智能(artificial intelligence,AI)技术的快速发展及其在社会、经济和生活各领域的广泛应用,AI素养已成为提高生产力的必备能力。然而,针对高校学生群体的AI素养,目前尚缺乏统一且明确的指标体系。基于现有的AI素养框架,并通过... 随着人工智能(artificial intelligence,AI)技术的快速发展及其在社会、经济和生活各领域的广泛应用,AI素养已成为提高生产力的必备能力。然而,针对高校学生群体的AI素养,目前尚缺乏统一且明确的指标体系。基于现有的AI素养框架,并通过国内外专家的咨询反馈和指标修正,研究构建了一个包含知识与理解、技能与应用、评价与创造、伦理与道德等4个一级指标和17个二级指标的AI素养评价体系。随后,研究利用层次分析法确立了各级指标的权重,并通过构建反向传播神经网络对这些权重进行了验证。通过将专家知识引导与数据驱动相结合,研究最终构建了一个科学且具有较强操作性的AI素养指标体系,为我国高校学生AI素养评价提供了理论支持和工具借鉴。 展开更多
关键词 人工智能素养 层次分析法 反向传播神经网络 人工智能教育 学习评价
在线阅读 下载PDF
改进SSA优化BPNN的煤体瓦斯渗透率预测模型
4
作者 汪伟 崔欣超 +3 位作者 祁云 李绪萍 王璜瑞 齐庆杰 《中国安全科学学报》 北大核心 2025年第2期137-143,共7页
为更加精确地预测煤体瓦斯渗透率,进而保障煤矿安全生产,构建基于改进麻雀搜索算法(ISSA)优化反向传播神经网络(BPNN)的煤体瓦斯渗透率预测模型。首先,通过引入Sine混沌映射和高斯变异改进麻雀搜索算法(SSA),以增强其全局搜索能力和局... 为更加精确地预测煤体瓦斯渗透率,进而保障煤矿安全生产,构建基于改进麻雀搜索算法(ISSA)优化反向传播神经网络(BPNN)的煤体瓦斯渗透率预测模型。首先,通过引入Sine混沌映射和高斯变异改进麻雀搜索算法(SSA),以增强其全局搜索能力和局部寻优精度,从而优化BPNN的权值和阈值配置;然后,通过皮尔逊相关系数矩阵和核主成分分析(KPCA)处理瓦斯渗透率影响因素的数据,以提高模型的计算效率和准确性,并以累积方差达88.59%的3个主成分提取为模型输入,渗透率作为输出进行试验;最后,将该模型应用于山西某煤矿进行实例验证。结果表明:ISSA-BPNN在平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数R^(2)等4个指标上优于粒子群算法(PSO)优化BPNN、PSO优化支持向量机(PSO-SVM)、PSO优化最小二乘支持向量机(LSSVM)及SSA优化BPNN(SSA-BPNN)模型,且相较于其他模型在测试样本中的平均绝对误差(MAE)分别降低0.0327、0.022、0.0179、0.0182;MAPE分别降低5.15%、3.14%、2.76%、2.36%;RMSE分别降低0.0316、0.0279、0.0188、0.0222;R^(2)分别提高0.0775、0.0658、0.0401、0.0493;实例验证表明模型可靠性和稳定性较高。 展开更多
关键词 改进麻雀搜索算法(ISSA) 反向传播神经网络(bpnn) 煤体瓦斯 渗透率 预测模型
在线阅读 下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:3
5
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) bp神经网络(bpnn) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
在线阅读 下载PDF
基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测 被引量:4
6
作者 罗震 董建伟 胡建明 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期445-451,共7页
电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文... 电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文以2219/5A06铝合金为研究对象,在3种不同的装配条件(包括间隙和间距)下进行电阻点焊工艺信号的分析,并进行人工智能建模.为了提高电阻点焊质量评价的性能和效率,本文采用Logistic-Tent(LT)复合映射改进麻雀搜索算法(SSA)对反向传播神经网络(LT-SSA-BPNN)模型进行优化,模型的输入和输出分别为多信号融合后的变量和熔核直径.实验结果表明,与传统的标准反向传播神经网络(BPNN)模型相比,经过LT-SSA-BP模型优化后,预测结果的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别降低了36.17%、17.55%和51.75%.同时,LT-SSA-BP神经网络在添加了不同间隙和间距条件作为训练集后,其预测稳定性明显提高,可以成功预测电阻点焊质量. 展开更多
关键词 电阻点焊 质量预测 麻雀搜索算法 反向传播神经网络模型
在线阅读 下载PDF
基于改进 PSO-BPNN 的拖拉机液压油品质监测 被引量:2
7
作者 李仲兴 朱方喜 +1 位作者 刘炳晨 郗少华 《中国农机化学报》 北大核心 2024年第10期140-146,共7页
为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉... 为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉机液压油品质监测试验装置,并依据试验装置采集与监测液压油粘度、介电常数和温度参数。然后,设计并搭建一种基于改进PSO-BPNN的拖拉机液压油品质监测模型,该模型利用正弦调整惯性权重的PSO算法优化BPNN的权值和阈值初始值,提高模型收敛效率。最后,为验证基于改进PSO-BPNN的液压油品质监测方法的可行性,与基于传统BPNN、标准PSO-BPNN的拖拉机液压油品质监测模型进行对比。结果表明,基于改进PSO-BPNN的拖拉机液压油品质监测方法具有较快的收敛速度,监测正确率达到97.78%,为优化拖拉机液压油品质监测方法提供参考。 展开更多
关键词 拖拉机 液压油品质 改进PSO算法 bp神经网络
在线阅读 下载PDF
基于MIV-PSO-BPNN的掘进面风温预测方法 被引量:2
8
作者 程磊 李正健 +2 位作者 贺智勇 史浩镕 王鑫 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期11-17,共7页
目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPN... 目的为防治矿井热害,解决矿井掘进面风温预测问题,方法提出一种MIV算法优化的PSO-BPNN预测模型。通过利用MIV算法确定模型的输入变量,以BP网络建模,使用粒子群优化算法结合BP神经网络实现掘进工作面风流温度的预测,得到预测结果并与BPNN模型、PSO-BPNN模型、SVR模型相比较。结果结果表明:MIV-PSO-BPNN预测模型的相对误差为-0.47%~1.81%,分别优于PSO-BPNN、BPNN、SVR预测模型的-3.96%~1.93%,-5.54%~2.98%,-2.16%~2.95%,预测模型的误差为-0.1~0.5℃,表明预测值与实测值基本一致;与BPNN预测模型、PSO-BPNN预测模型、SVR预测模型相比,MIV-PSO-BPNN预测模型的预测结果平均绝对误差分别减少65%,54%,50%,均方误差分别减少88%,78%,69%,表明该预测模型的预测效果优于其他3种模型。结论所提模型适用于矿井掘进工作面风温的预测。 展开更多
关键词 bp神经网络 MIV算法 粒子群优化算法 风温预测 算法优化
在线阅读 下载PDF
特征融合与BP神经网络结合的刀具磨损预测 被引量:1
9
作者 郭宏 徐延 +1 位作者 伊亚聪 胡孔耀 《机械设计与制造》 北大核心 2025年第1期108-111,116,共5页
通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在... 通过监测刀具磨损情况,能够有效应对生产加工中的意外状况。为了精确监测刀具的磨损状态,提出了一种多传感器特征融合及BP神经网络结合的刀具磨损预测方法。首先对工业加工中采集到的切削力、振动、声发射信号进行小波阈值去噪,然后在时域、频域和时频域内分析并提取特征,再将融合后的各类传感器特征使用Pearson相关系数和主成分分析(PCA)实现数据降维,最后将降维后的融合特征输入搭建好的BP神经网络,通过非线性仿真分析,从而实现刀具磨损量的预测。案例验证表明:与单一传感器预测相比,提出的多传感器特征融合的刀具磨损预测方法误差最小,且决定系数R2达到0.993。 展开更多
关键词 传感器 特征提取 小波去噪 PCA bp神经网络 磨损预测
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断 被引量:2
10
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:1
11
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
12
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 bp神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于BP神经网络的家具供应链脆弱性评价
13
作者 屈俊林 庞燕 王忠伟 《中南林业科技大学学报》 北大核心 2025年第3期158-166,共9页
【目的】对家具供应链脆弱性进行评价研究,以期从供应链脆弱性的角度为家具供应链风险管理决策提供参考依据。【方法】结合新时代背景下家具供应链发展新特征,对家具供应链各环节脆弱性进行分解,运用德尔菲法筛选家具供应链脆弱性因素,... 【目的】对家具供应链脆弱性进行评价研究,以期从供应链脆弱性的角度为家具供应链风险管理决策提供参考依据。【方法】结合新时代背景下家具供应链发展新特征,对家具供应链各环节脆弱性进行分解,运用德尔菲法筛选家具供应链脆弱性因素,利用SPSS软件进行信度和效度分析,构建包括数字化供应链成熟度在内的家具供应链脆弱性评价指标体系。利用BP神经网络在风险评价方面的优势,结合置换特征重要性算法,运用Python进行仿真训练,构建基于BP神经网络的家具供应链脆弱性评价模型。【结果】1)构建了由3个一级指标、9个二级指标和24个三级指标构成的家具供应链脆弱性评价指标体系;2)采用置换特征重要性算法计算家具供应链脆弱性评价指标权重,根据权重对评价指标进行了排序发现,市场需求预测、供应链信息协同、供应链决策水平、产业结构调整和产品竞争力这5项指标对家具企业供应链脆弱性预测值具有较大的正向显著性;3)通过迭代和训练发现,基于BP神经网络的家具供应链脆弱性评价模型对61组训练集数据的分类预测准确率为100%,最大相对误差为0.002 256%;对20组测试样本数据的分类预测准确率为95%,最大相对误差为0.5%。【结论】基于BP神经网络的家具供应链脆弱性评价模型有良好的非线性映射和学习能力,拥有较强的分类预测功能,能全面有效地对家具供应链脆弱性进行评价。 展开更多
关键词 家具 供应链 脆弱性 bp神经网络 评价
在线阅读 下载PDF
应用人工智能方法计算致密气藏可采储量——以BP神经网络为例
14
作者 米乃哲 乔向阳 +3 位作者 李旭芬 吕远 许伟 谢小飞 《大庆石油地质与开发》 北大核心 2025年第3期70-76,共7页
针对传统可采储量计算条件苛刻,尤其致密气藏可采储量计算存在工作量大、计算误差大,测试资料不完整的气井不能有效计算的问题。采用人工智能方法计算可采储量,其过程可以看作在气田大数据基础上利用模型、算法与算力为可采储量计算提... 针对传统可采储量计算条件苛刻,尤其致密气藏可采储量计算存在工作量大、计算误差大,测试资料不完整的气井不能有效计算的问题。采用人工智能方法计算可采储量,其过程可以看作在气田大数据基础上利用模型、算法与算力为可采储量计算提供产品、服务、应用,将人工智能具有的解决数据模糊问题、高效协调能力、强学习能力和非线性能力的优势用于可采储量计算。将资料完整准确气井计算可采储量作为学习样本;利用气藏地质和动态研究成果初选计算参数,灰色关联遴选最终计算参数;通过人工智能训练学习建立最终参数与可采储量间关系,应用建立的关系完成其他气井可采储量的计算。应用于延安气田Y50井区,单井验证误差范围-1.88%~4.80%,多井累计误差为1.13%。实践表明,应用人工智能方法计算可采储量可以满足工程计算需要,可大幅度提高计算效率,节约人工成本,降低测试费用,无测试资料和资料不完整气井也可完成可采储量的计算。 展开更多
关键词 致密气藏 可采储量 人工智能 bp神经网络
在线阅读 下载PDF
基于改进BP神经网络的激光选区熔化表面粗糙度预测
15
作者 丁燕 王磊 王远 《电加工与模具》 北大核心 2025年第1期62-68,共7页
为提升激光选区熔化表面粗糙度预测的精确度,提出改进BP神经网络模型。首先依据参数建立指数模型,利用灰色关联度分析各因素,求解获得各因素的指数值;然后建立BP神经网络模型,改进粒子群算法优化包括自适应惯性权重更新和动态调节学习因... 为提升激光选区熔化表面粗糙度预测的精确度,提出改进BP神经网络模型。首先依据参数建立指数模型,利用灰色关联度分析各因素,求解获得各因素的指数值;然后建立BP神经网络模型,改进粒子群算法优化包括自适应惯性权重更新和动态调节学习因子,同时指数模型预测结果作为特征输入到BP神经网络模型;最后给出算法流程。实验显示,改进BP神经网络在较少的隐含层节点下达到了更低的平均相对误差,激光选区熔化表面粗糙度预测更接近真实值,改进BP神经网络决定系数相比EM、BPNN、GABPNN分别提升了6.40%、1.14%、0.07%,均方根误差相比EM、BPNN、GABPNN分别降低了0.0363、0.0627、0.0668,评价指标较优。 展开更多
关键词 bp神经网络 激光选区熔化 粗糙度 粒子群 精确度
在线阅读 下载PDF
基于动量算法优化的BP神经网络HRG漂移补偿方法
16
作者 罗巍 魏博深 +2 位作者 陈刚 唐明浩 戴劼峰 《中国惯性技术学报》 北大核心 2025年第5期502-509,共8页
针对半球谐振陀螺(HRG)漂移传统分步标定补偿方法存在的补偿精度低与耗时长问题,提出一种基于动量算法优化的反向传播(BP)神经网络HRG漂移补偿方法。根据HRG误差模型分析了分步标定补偿方法的局限性,构建了基于BP神经网络的HRG漂移补偿... 针对半球谐振陀螺(HRG)漂移传统分步标定补偿方法存在的补偿精度低与耗时长问题,提出一种基于动量算法优化的反向传播(BP)神经网络HRG漂移补偿方法。根据HRG误差模型分析了分步标定补偿方法的局限性,构建了基于BP神经网络的HRG漂移补偿模型,并引入动量算法,提升BP神经网络训练效率,利用三只自研的HRG进行了实验验证。实验结果表明:所提方法能够有效提升陀螺精度,同时简化标定和补偿流程,提高陀螺漂移补偿工作效率,相比现有分步标定补偿法,陀螺精度提升36.1%,标定补偿效率提升32.1%。 展开更多
关键词 半球谐振陀螺 bp神经网络 陀螺漂移补偿
在线阅读 下载PDF
基于EWMA—优化BP神经网络的农业巡检机器人定位
17
作者 蒋祥龙 丁珠玉 《中国农机化学报》 北大核心 2025年第5期86-91,共6页
为解决农业巡检机器人行间定位过程中产生非视距(NLOS)误差干扰,提出一种EWMA—优化BP神经网络模型定位方法。在BP神经网络基础上,融合指数加权移动平均算法(EWMA)弥补其定位远距离处精度较低的不足,同时EWMA采用三次函数形式设计加权系... 为解决农业巡检机器人行间定位过程中产生非视距(NLOS)误差干扰,提出一种EWMA—优化BP神经网络模型定位方法。在BP神经网络基础上,融合指数加权移动平均算法(EWMA)弥补其定位远距离处精度较低的不足,同时EWMA采用三次函数形式设计加权系数;为避免BP神经网络收敛速度慢、局部最优,引入动量因子和自适应学习速率进行改进BP神经网络,并通过归一化处理数量级差距很大的输入、输出向量,考虑到计算方便,降低神经元饱和度,最终融合TDOA定位模型的Chan算法获得最优值。农业大棚巡检机器人行间动静态定位试验分析表明,所提模型静态定位误差90%的情况下不超过0.2 cm,动态定位X轴方向估计误差均值为3 cm,Y轴方向估计误差均值为5 cm,NLOS因素干扰下平均定位误差降低90%,基本滤除NLOS因素干扰下的定位误差。 展开更多
关键词 农业巡检机器人 精准定位 bp神经网络 非视距
在线阅读 下载PDF
基于BP神经网络的路堑下穿致高铁桥墩位移的预测
18
作者 宋旭明 陈松 +2 位作者 唐冕 孙凯 程丽娟 《中南大学学报(自然科学版)》 北大核心 2025年第6期2539-2549,共11页
依托某新建路堑工程,建立土体-桥梁三维数值模型,采用正交试验法分析高铁桥梁附加位移的参数敏感性,利用拉丁超立方抽样方法,通过神经网络(backpropagation neural network)拟合墩顶附加位移与主要影响因素的隐式函数关系,结合蒙特卡洛... 依托某新建路堑工程,建立土体-桥梁三维数值模型,采用正交试验法分析高铁桥梁附加位移的参数敏感性,利用拉丁超立方抽样方法,通过神经网络(backpropagation neural network)拟合墩顶附加位移与主要影响因素的隐式函数关系,结合蒙特卡洛法,对参数进行1×10^(6)次抽样计算,得到墩顶附加位移的超限概率。研究结果表明:浅层土体力学参数对墩顶纵向位移的影响较大,开挖深度对墩顶纵向位移的影响最显著;最优BP神经网络模型预测的墩顶附加位移与有限元计算值的均方误差为4.345×10^(-4),最大相对误差为5.1%,表明最优BP神经网络模型可代替有限元进行快速估算;当开挖深度在2 m以内时,背景工程墩顶纵向附加位移基本不会超限,当开挖深度为3 m时,超限概率达40%,建议开挖前采用适当的支护措施以确保结构安全。 展开更多
关键词 路堑开挖 敏感性分析 随机响应面 bp神经网络 位移预测 可靠度
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
19
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(WOA) bp神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
20
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部