The laser-guided bomb(LGB)is an air-to-ground pre-cision-guided weapon that offers high hit rates,great power,and ease of use.LGBs are guided by semi-active laser ground-seek-ing technology,which means that atmospheri...The laser-guided bomb(LGB)is an air-to-ground pre-cision-guided weapon that offers high hit rates,great power,and ease of use.LGBs are guided by semi-active laser ground-seek-ing technology,which means that atmospheric conditions can affect their accuracy.The spatial release region(SRR)of LGBs is difficult to calculate precisely,especially when there is a poor field of view.This can result in a lower real hit probability.To increase the hit probability of LGBs in tough atmospheric situa-tions,a novel method for calculating the SRR has been pro-posed.This method is based on the transmittance model of the 1.06μm laser in atmospheric species and the laser diffuse reflection model of the target surface to determine the capture target time of the laser seeker.Then,it calculates the boundary ballistic space starting position by ballistic model and gets the spatial scope of the spatial release region.This method can determine the release region of LGBs based on flight test data such as instantaneous velocity,altitude,off-axis angle,and atmospheric visibility.By more effectively employing aircraft release conditions,atmospheric visibility and other factors,the SRR calculation method can improve LGB hit probabi-lity by 9.2%.展开更多
An upsurge of terrorist activity has occurred in the past two decades. As part of this, explosive devices continue to be extensively deployed against civilians in wide-ranging environments. Bombings remain the leading...An upsurge of terrorist activity has occurred in the past two decades. As part of this, explosive devices continue to be extensively deployed against civilians in wide-ranging environments. Bombings remain the leading worldwide cause of civilian fatalities due to terrorism. This demands an understanding of modern terrorist bombing trends to inform mitigation strategy. The objective of this study was to identify the occurrence and severity of bombings against civilian targets in diverse attack settings, and to establish corresponding blast injury profiles. Data was obtained from analysis of the Global Terrorism Database(GTD) and a meta-analysis of blast injury data derived from the PubMed database. Closed environment explosions were associated with significantly greater(p<0.05) mortality than in open spaces. The injury profiles were found to be influenced by attack setting, with higher rates of primary injury on trains and buses, and secondary injury in open space.展开更多
PIT tests are usually performed when a mass distribution of High Explosive(H.E) projectile fragments is required. This paper shows the underwater detonation effects of 60 mm, M90 H.E. mortar bomb filled with Comp. B o...PIT tests are usually performed when a mass distribution of High Explosive(H.E) projectile fragments is required. This paper shows the underwater detonation effects of 60 mm, M90 H.E. mortar bomb filled with Comp. B on cylindrical concrete structure(concrete pipe closed at one end-similar to a PIT test)which is 2 m high(inner height) with inner diameter of also 2 m. Thickness of both wall and bottom of a pipe is 0.35 m. Detailed characteristics of concrete which is used for manufacturing of a pipe are specified. Mortar bomb is submerged directly in to the water(no free airspace around the bomb) with the nose pointing to the bottom of a pipe. Number and mass of fragments after detonation are presented by table and photographs. Fragments of dummy fuze, through which blasting cap was protruded, are collected and reassembled to form a shape of a fuze after detonation where expanding of fuze material due to a detonation products is visualized. After underwater detonation, detonation of the same mortar bomb is performed in an empty pipe and the effects of this kind of detonation are observed. Distance at which fragments generated from submerged mortar bomb will not reach concrete pipes wall is also determined.展开更多
When considering the bomb explosion damage effect,the air shock wave and high-speed fragments of the bomb case are two major threats.In experiments,the air shock wave was studied by the bare explosives superseding the...When considering the bomb explosion damage effect,the air shock wave and high-speed fragments of the bomb case are two major threats.In experiments,the air shock wave was studied by the bare explosives superseding the real cased bomb;in contrast,the bomb case influence was ignored to reduce risk.The air explosion simulations of the MK84 warhead with and without the case were conducted.The numerical simulation results showed that the bomb case significantly influenced the shock wave generated by the bomb:the spatial distribution of shock wave in the near field changed,and the peak value of shock wave was reduced.Breakage of the case and kinetic energy of the fragmentation consumed 3 and 38% of the explosion energy,respectively.The increasing factors of the peak overpressure induced by the bare explosive on the ground and in the air were 1.43-3.04 and 1.37-1.57,respectively.Four typical stages of case breakage were defined.The mass distribution of the fragments follows the Mott distribution.The initial velocity distribution of the fragments agreed well with the Gurney equation.展开更多
It has been said that,once a bomb casing has fractured, "detonation gases will then stream around the fragments or bypass them,and the acceleration process stops there." However,while apparently copious gas ...It has been said that,once a bomb casing has fractured, "detonation gases will then stream around the fragments or bypass them,and the acceleration process stops there." However,while apparently copious gas flow through casing fractures indicates some pressure release,it is also an indication of significant gas drive pressure,post casing fracture.This paper shows two approaches to the problem of calculating the actual loss of drive.One presents first-order analytical calculations,in cylindrical geometry,of pressure loss to the inside surface of a fractured casing.The second shows the modelling of a selected example in the CTH code.Both approaches reveal that gas escape,while occurring at its own soundspeed relative to the adjacent casing fragments,has to compete with rapid radial expansion of the casing.Together with some historic experiments now publicly available,our calculations indicate that post-fracture casing fragment acceleration is,for most systems,unlikely to be reduced significantly.展开更多
Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solvi...Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.展开更多
The paper mainly studies the first attack probability (FAP) of an attacker level bombing anti-air radars through analyzing the radiant point orientation and attack (RPOA) process of attackers. Firstly, the searching t...The paper mainly studies the first attack probability (FAP) of an attacker level bombing anti-air radars through analyzing the radiant point orientation and attack (RPOA) process of attackers. Firstly, the searching target process is analyzed, and a corresponding target finding model is brought forward. Secondly, the target approaching process is concretely analyzed when the attacker levelly bombs the anti-air radar, and a corresponding target approaching model is presented. Finally, a demonstration is given to analyze the major factors in the model and prove its validity.展开更多
This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and sil...This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and silicon-based delay compositions,using thermodynamic software.A multiphase flowthermal-solid coupling model was established,and the combustion process of the pyrotechnic charges within a closed bomb was simulated.The pyrotechnic shock generated by combustion was predicted.The combustion pressures and pyrotechnic shocks were measured.The simulation results demonstrated good agreement with experimental results.Additionally,the mechanism of shock generation by the combustion of pyrotechnic charges in the closed bomb was analyzed.The effects of the combustion characteristics of the pyrotechnic charges on the resulting pyrotechnic shocks were systematically investigated.Notably,the shock response spectrum of the gas-generating pyrotechnic charges is greater than that of the micro gas compositions at most frequencies,particularly in the mid-field pyrotechnic shocks(3-10 kHz).Furthermore,the pyrotechnic shocks increase approximately linearly with the impulse of the gas-generating pyrotechnic charges.展开更多
基金This work was supported by the major research projects within the military-international class(JY2021B077).
文摘The laser-guided bomb(LGB)is an air-to-ground pre-cision-guided weapon that offers high hit rates,great power,and ease of use.LGBs are guided by semi-active laser ground-seek-ing technology,which means that atmospheric conditions can affect their accuracy.The spatial release region(SRR)of LGBs is difficult to calculate precisely,especially when there is a poor field of view.This can result in a lower real hit probability.To increase the hit probability of LGBs in tough atmospheric situa-tions,a novel method for calculating the SRR has been pro-posed.This method is based on the transmittance model of the 1.06μm laser in atmospheric species and the laser diffuse reflection model of the target surface to determine the capture target time of the laser seeker.Then,it calculates the boundary ballistic space starting position by ballistic model and gets the spatial scope of the spatial release region.This method can determine the release region of LGBs based on flight test data such as instantaneous velocity,altitude,off-axis angle,and atmospheric visibility.By more effectively employing aircraft release conditions,atmospheric visibility and other factors,the SRR calculation method can improve LGB hit probabi-lity by 9.2%.
基金support of the Institute for Security Science and TechnologyThe Royal British Legion Centre for Blast Injury Studies at Imperial College LondonThe Institute of Shock Physics also acknowledges the support of Imperial College London
文摘An upsurge of terrorist activity has occurred in the past two decades. As part of this, explosive devices continue to be extensively deployed against civilians in wide-ranging environments. Bombings remain the leading worldwide cause of civilian fatalities due to terrorism. This demands an understanding of modern terrorist bombing trends to inform mitigation strategy. The objective of this study was to identify the occurrence and severity of bombings against civilian targets in diverse attack settings, and to establish corresponding blast injury profiles. Data was obtained from analysis of the Global Terrorism Database(GTD) and a meta-analysis of blast injury data derived from the PubMed database. Closed environment explosions were associated with significantly greater(p<0.05) mortality than in open spaces. The injury profiles were found to be influenced by attack setting, with higher rates of primary injury on trains and buses, and secondary injury in open space.
文摘PIT tests are usually performed when a mass distribution of High Explosive(H.E) projectile fragments is required. This paper shows the underwater detonation effects of 60 mm, M90 H.E. mortar bomb filled with Comp. B on cylindrical concrete structure(concrete pipe closed at one end-similar to a PIT test)which is 2 m high(inner height) with inner diameter of also 2 m. Thickness of both wall and bottom of a pipe is 0.35 m. Detailed characteristics of concrete which is used for manufacturing of a pipe are specified. Mortar bomb is submerged directly in to the water(no free airspace around the bomb) with the nose pointing to the bottom of a pipe. Number and mass of fragments after detonation are presented by table and photographs. Fragments of dummy fuze, through which blasting cap was protruded, are collected and reassembled to form a shape of a fuze after detonation where expanding of fuze material due to a detonation products is visualized. After underwater detonation, detonation of the same mortar bomb is performed in an empty pipe and the effects of this kind of detonation are observed. Distance at which fragments generated from submerged mortar bomb will not reach concrete pipes wall is also determined.
文摘When considering the bomb explosion damage effect,the air shock wave and high-speed fragments of the bomb case are two major threats.In experiments,the air shock wave was studied by the bare explosives superseding the real cased bomb;in contrast,the bomb case influence was ignored to reduce risk.The air explosion simulations of the MK84 warhead with and without the case were conducted.The numerical simulation results showed that the bomb case significantly influenced the shock wave generated by the bomb:the spatial distribution of shock wave in the near field changed,and the peak value of shock wave was reduced.Breakage of the case and kinetic energy of the fragmentation consumed 3 and 38% of the explosion energy,respectively.The increasing factors of the peak overpressure induced by the bare explosive on the ground and in the air were 1.43-3.04 and 1.37-1.57,respectively.Four typical stages of case breakage were defined.The mass distribution of the fragments follows the Mott distribution.The initial velocity distribution of the fragments agreed well with the Gurney equation.
基金sponsored by the NWIPT Department of the U.K.Ministry of Defence
文摘It has been said that,once a bomb casing has fractured, "detonation gases will then stream around the fragments or bypass them,and the acceleration process stops there." However,while apparently copious gas flow through casing fractures indicates some pressure release,it is also an indication of significant gas drive pressure,post casing fracture.This paper shows two approaches to the problem of calculating the actual loss of drive.One presents first-order analytical calculations,in cylindrical geometry,of pressure loss to the inside surface of a fractured casing.The second shows the modelling of a selected example in the CTH code.Both approaches reveal that gas escape,while occurring at its own soundspeed relative to the adjacent casing fragments,has to compete with rapid radial expansion of the casing.Together with some historic experiments now publicly available,our calculations indicate that post-fracture casing fragment acceleration is,for most systems,unlikely to be reduced significantly.
文摘Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.
文摘The paper mainly studies the first attack probability (FAP) of an attacker level bombing anti-air radars through analyzing the radiant point orientation and attack (RPOA) process of attackers. Firstly, the searching target process is analyzed, and a corresponding target finding model is brought forward. Secondly, the target approaching process is concretely analyzed when the attacker levelly bombs the anti-air radar, and a corresponding target approaching model is presented. Finally, a demonstration is given to analyze the major factors in the model and prove its validity.
文摘This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and silicon-based delay compositions,using thermodynamic software.A multiphase flowthermal-solid coupling model was established,and the combustion process of the pyrotechnic charges within a closed bomb was simulated.The pyrotechnic shock generated by combustion was predicted.The combustion pressures and pyrotechnic shocks were measured.The simulation results demonstrated good agreement with experimental results.Additionally,the mechanism of shock generation by the combustion of pyrotechnic charges in the closed bomb was analyzed.The effects of the combustion characteristics of the pyrotechnic charges on the resulting pyrotechnic shocks were systematically investigated.Notably,the shock response spectrum of the gas-generating pyrotechnic charges is greater than that of the micro gas compositions at most frequencies,particularly in the mid-field pyrotechnic shocks(3-10 kHz).Furthermore,the pyrotechnic shocks increase approximately linearly with the impulse of the gas-generating pyrotechnic charges.