期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于BO-GRU和AKDE的船舶异常行为识别
1
作者 彭耀武 陈辰 +1 位作者 刘敬贤 王余宽 《中国航海》 CSCD 北大核心 2024年第3期10-20,共11页
船舶异常行为识别是海事安全科学理论研究的重要组成部分,对异常行为的识别是海事监管的主要内容,对于船舶安全以及海上交通安全具有重要意义。针对船舶异常行为的识别,提出一种基于贝叶斯优化器(BO)改进的门控循环单元(GRU)BO-GRU和自... 船舶异常行为识别是海事安全科学理论研究的重要组成部分,对异常行为的识别是海事监管的主要内容,对于船舶安全以及海上交通安全具有重要意义。针对船舶异常行为的识别,提出一种基于贝叶斯优化器(BO)改进的门控循环单元(GRU)BO-GRU和自适应核密度估计(AKDE)的船舶异常行为识别方法。利用BO-GRU对船舶经纬度、航向和速度进行点预测,并对基于该神经网络所得到的预测值跟实际值进行比较得到误差数据集,利用AKDE对误差数据集进行非参数估计,以得到不同置信度下的船舶轨迹特征数据波动区间。试验基于天津港船舶自动识别系统(AIS)数据,通过与基础GRU、长短期记忆网络(LSTM)和双向长短期记忆网络(Bi-LSTM)相比较,验证BO-GRU预测精度更高;AKDE相比于其他方法估计能更好地拟合,并及时发现船舶异常行为。 展开更多
关键词 船舶异常行为 基于贝叶斯优化器改进的门控循环单元 自适应核密度估计 船舶自动识别系统数据 轨迹预测
在线阅读 下载PDF
基于BO-GRU的混凝土坝变形预测模型 被引量:8
2
作者 李其峰 杨杰 +1 位作者 程琳 仝飞 《水资源与水工程学报》 CSCD 北大核心 2021年第4期180-184,193,共6页
针对混凝土坝变形具有较强的非线性特点、目前大坝变形预测模型出现参数过多及易陷入局部最优等问题,提出了一种深度学习中的门控制循环单元(GRU)模型,并结合贝叶斯优化算法(BO)对门控制循环单元的超参数进行优化,建立BO-GRU模型应用于... 针对混凝土坝变形具有较强的非线性特点、目前大坝变形预测模型出现参数过多及易陷入局部最优等问题,提出了一种深度学习中的门控制循环单元(GRU)模型,并结合贝叶斯优化算法(BO)对门控制循环单元的超参数进行优化,建立BO-GRU模型应用于混凝土坝变形预测。为检验模型的可行性,以实测变形监测数据为基础,并与极限学习机、相关向量机和基于遗传算法优化的支持向量机等模型预测结果进行对比。结果表明:该模型的泛化能力强、运行效率高,能有效运用于混凝土坝的变形预测。 展开更多
关键词 混凝土坝 变形预测 深度学习 门控制循环单元 贝叶斯优化算法
在线阅读 下载PDF
基于ASWPD-BO-GRU的月径流量预测模型 被引量:3
3
作者 唐铭泽 杨银科 张菁雯 《水资源与水工程学报》 CSCD 北大核心 2023年第4期84-91,共8页
为提高月径流量预测精度,并针对传统分解集成径流预测模型错误使用未来数据的问题,提出并建立了基于自适应小波包分解(ASWPD)和贝叶斯优化(BO)的门控循环单元(GRU)月径流量预测模型(ASWPD-BO-GRU)。首先,利用ASWPD对原始月径流量时间序... 为提高月径流量预测精度,并针对传统分解集成径流预测模型错误使用未来数据的问题,提出并建立了基于自适应小波包分解(ASWPD)和贝叶斯优化(BO)的门控循环单元(GRU)月径流量预测模型(ASWPD-BO-GRU)。首先,利用ASWPD对原始月径流量时间序列进行分解,在不使用未来数据的前提下得到4个相对规律的分解子序列,以降低预测难度;然后,利用BO优选分解后的子序列对应的GRU模型超参数;最终,对每个子序列进行预测,将预测结果相加重组得出月径流量预测结果。将提出并建立的模型应用于黑河流域莺落峡水文站月径流量预测中,并与GRU、BO-GRU、WPD-BO-GRU模型(基于传统分解思想对原始月径流量时间序列整体进行分解的预测模型)的预测结果进行对比。结果表明:ASWPD-BO-GRU模型的纳什效率系数(NSE)为0.89,在实例应用中预测精度最高,说明ASWPD-BO-GRU模型在正确分解的前提下具有较高的预测精度和更强的泛化能力。 展开更多
关键词 月径流量预测 自适应动态分解策略 小波包分解 贝叶斯优化 门控循环单元
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部