期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于BLSTM-SVM混合模型的脑力负荷分类
1
作者 李兴国 曲洪权 +1 位作者 林赟 陈丽莉 《传感器与微系统》 北大核心 2025年第4期52-55,共4页
在一些复杂的人机系统中,对操作人员脑力负荷的评估具有重要意义。现有的脑力负荷研究很少考虑脑电(EEG)信号切片之间的时间依赖性。因此,本文提出了一种基于双向长短期记忆-支持向量机(BLSTM-SVM)混合模型的脑力负荷分类算法。该算法... 在一些复杂的人机系统中,对操作人员脑力负荷的评估具有重要意义。现有的脑力负荷研究很少考虑脑电(EEG)信号切片之间的时间依赖性。因此,本文提出了一种基于双向长短期记忆-支持向量机(BLSTM-SVM)混合模型的脑力负荷分类算法。该算法将脑电信号进行z-score标准化并转换成时间序列片段,然后输入BLSTM捕获脑电信号切片间的潜在时间信息和不同脑电信号通道之间的固有时间拓扑信息。同时,考虑到脑电信号维数灾难的问题,本文算法最后使用SVM进行分类。通过与其他算法比较,BLSTM-SVM的分类正确率能达到85.29%,明显优于其他算法。所提出的算法为脑力负荷的分类研究提供了一定的参考。 展开更多
关键词 脑力负荷 双向长短期记忆网络 支持向量机 脑电
在线阅读 下载PDF
基于Inception-BLSTM的滚动轴承故障诊断方法研究 被引量:16
2
作者 赵凯辉 吴思成 +2 位作者 李涛 贺才春 查国涛 《振动与冲击》 EI CSCD 北大核心 2021年第17期290-297,共8页
针对传统的滚动轴承故障诊断方法依赖大量先验知识以及容易人为引入误差等缺点,结合Inception模型的多尺度抽象特征提取能力与双向长短时记忆(BLSTM)神经网络序列建模的优势,提出一种基于Inception-BLSTM的滚动轴承故障诊断方法。首先,... 针对传统的滚动轴承故障诊断方法依赖大量先验知识以及容易人为引入误差等缺点,结合Inception模型的多尺度抽象特征提取能力与双向长短时记忆(BLSTM)神经网络序列建模的优势,提出一种基于Inception-BLSTM的滚动轴承故障诊断方法。首先,设计Inception模型从滚动轴承振动信号中提取出多尺度抽象特征。其次,设计BLSTM进一步学习特征信息的时间依赖性。最后,通过全连接层将特征信息映射到对应的故障模式并得出诊断结果。实验结果表明,该方法在多负载场景下的轴承故障识别精度达到了99.6%,具有良好的负载适应性以及抗干扰能力。 展开更多
关键词 滚动轴承 故障诊断 Inception模型 双向长短时记忆(blstm)
在线阅读 下载PDF
基于CNN和BLSTM的连续手语识别 被引量:8
3
作者 张淑军 王帅 李辉 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第4期177-186,共10页
相对孤立词识别,连续手语识别对上下文的时间依赖性更强、语义更加复杂且时序分割困难,目前的研究在识别精度、背景抗干扰性和抗过拟合能力等方面仍存在不足。为此,提出一种基于CNN和BLSTM的连续手语识别方法,通过自适应视频采样,对输... 相对孤立词识别,连续手语识别对上下文的时间依赖性更强、语义更加复杂且时序分割困难,目前的研究在识别精度、背景抗干扰性和抗过拟合能力等方面仍存在不足。为此,提出一种基于CNN和BLSTM的连续手语识别方法,通过自适应视频采样,对输入视频数据进行预处理,去除无关背景的干扰;在CNN空间特征提取的基础上,利用BLSTM双向语义依赖挖掘能力,对连续手语视频进行时序建模,构建CTC损失函数解决时间序列标签对齐问题。该算法在CSL和ConGD数据集上分别取得了98.4%和62.5%的平均识别率。 展开更多
关键词 深度学习 连续手语识别 CNN blstm CTC
在线阅读 下载PDF
基于BLSTM-RNN的船舶轨迹修复方法 被引量:5
4
作者 王贵槐 钟诚 +1 位作者 初秀民 张代勇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第10期7-12,67,共7页
针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性... 针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性分析及序列自相关系数,确定船舶轨迹点相关变量及轨迹序列自相关滞后值;在模型结构上,以ACC率为指标对模型超参数值进行合理设置,以长江干线航道武汉段及重庆段船舶轨迹数据为样本,对模型进行实证验证。实验结果表明:与线性及其他机器学习方法相比BLSTM-RNN方法在精度上有一定提升;在武汉段顺直河段实验中,将修复误差控制在15 m量级内,远低于其他非线性方法的50 m量级;在重庆复杂河段内,可将修复误差控制在10 m量级;模型解决了传统方法在长距离丢失点上精度缺失的问题,在20个连续点丢失的情况上,将修复误差降低至50m量级。 展开更多
关键词 船舶工程 双向长短时记忆网络(blstm) 循环神经网络(RNN) 船舶轨迹修复 船舶自动驾驶
在线阅读 下载PDF
基于ResNet-BLSTM的端到端语音识别 被引量:12
5
作者 胡章芳 徐轩 +2 位作者 付亚芹 夏志广 马苏东 《计算机工程与应用》 CSCD 北大核心 2020年第18期124-130,共7页
基于深度学习的端到端语音识别模型中,由于模型的输入采用固定长度的语音帧,造成时域信息和部分高频信息损失进而导致识别率不高、鲁棒性差等问题。针对上述问题,提出了一种基于残差网络与双向长短时记忆网络相结合的模型,该模型采用语... 基于深度学习的端到端语音识别模型中,由于模型的输入采用固定长度的语音帧,造成时域信息和部分高频信息损失进而导致识别率不高、鲁棒性差等问题。针对上述问题,提出了一种基于残差网络与双向长短时记忆网络相结合的模型,该模型采用语谱图作为输入,同时在残差网络中设计并行卷积层,提取不同尺度的特征,然后进行特征融合,最后采用连接时序分类方法进行分类,实现一个端到端的语音识别模型。实验结果表明,该模型在Aishell-1语音集上字错误率相较于传统端到端模型的WER下降2.52%,且鲁棒性较好。 展开更多
关键词 残差网络(ResNet) 双向长短时记忆网络(blstm) 并行卷积层 连接时序分类
在线阅读 下载PDF
用于短文本分类的BLSTM_MLPCNN模型 被引量:11
6
作者 郑诚 洪彤彤 薛满意 《计算机科学》 CSCD 北大核心 2019年第6期206-211,共6页
文本表示和文本特征提取是自然语言处理的基础工作,直接影响文本分类的性能。文中提出了以字符级向量联合词向量作为输入的BLSTM_MLPCNN神经网络模型。该模型首先将卷积神经网络(CNN)作用于字符以获取字符级向量,并将字符级向量联合词... 文本表示和文本特征提取是自然语言处理的基础工作,直接影响文本分类的性能。文中提出了以字符级向量联合词向量作为输入的BLSTM_MLPCNN神经网络模型。该模型首先将卷积神经网络(CNN)作用于字符以获取字符级向量,并将字符级向量联合词向量作为预训练词嵌入向量,也即双向长短时记忆网(BLSTM)模型的输入;然后联合BLSTM模型的前向输出、词嵌入向量、后向输出构成文档特征图;最后利用多层感知器卷积神经网络(MLPCNN)进行特征提取。在相关数据集上的实验结果表明:相比于CNN,RNN以及CNN与RNN的组合模型,BLSTM_MLPCNN模型具有更优的分类性能。 展开更多
关键词 字符级向量 词向量 卷积神经网络(CNN) 双向长短时记忆神经网络(blstm) 多层感知器(MLP) 多层感知器卷积网络(MLPCNN)
在线阅读 下载PDF
基于深度BLSTM和分类元数据的自定义情感分类 被引量:2
7
作者 杨春霞 李欣栩 +1 位作者 瞿涛 秦家鹏 《小型微型计算机系统》 CSCD 北大核心 2020年第9期1853-1857,共5页
在传统的情感分类任务中,存在无法有效捕捉文本深层特征的问题,同时也存在不考虑如用户信息和产品信息等分类元数据而直接进行粗糙建模的问题.针对第一个问题,本文首先通过深度BLSTM(DBLSTM)来识别上下文词义联系和获取文本深层特征;其... 在传统的情感分类任务中,存在无法有效捕捉文本深层特征的问题,同时也存在不考虑如用户信息和产品信息等分类元数据而直接进行粗糙建模的问题.针对第一个问题,本文首先通过深度BLSTM(DBLSTM)来识别上下文词义联系和获取文本深层特征;其次利用自注意力机制网络层捕获文本中重要的特征.针对第二个问题,本文融合分类元数据自定义分类器,该分类器利用上下文感知注意力为分类元数据配制特定参数,这使得分类器可以参考文本中存在的不同分类元数据来对网络层提取到的特征做出综合评价分类.在Yelp2013、Yelp2014、IMDB等三个数据集上测试,实验结果显示,本文构建的模型与现有的多个基线情感分类模型相比效果均有一定的提高. 展开更多
关键词 情感分类 文本特征提取 注意力机制 分类元数据 深度blstm
在线阅读 下载PDF
基于BLSTM的命名实体识别方法 被引量:53
8
作者 冯艳红 于红 +1 位作者 孙庚 孙娟娟 《计算机科学》 CSCD 北大核心 2018年第2期261-268,共8页
传统的命名实体识别方法直接依靠大量的人工特征和专门的领域知识,解决了监督学习语料不足的问题,但设计人工特征和获取领域知识的代价昂贵。针对该问题,提出一种基于BLSTM(Bidirectional Long Short-Term Memory)的神经网络结构的命名... 传统的命名实体识别方法直接依靠大量的人工特征和专门的领域知识,解决了监督学习语料不足的问题,但设计人工特征和获取领域知识的代价昂贵。针对该问题,提出一种基于BLSTM(Bidirectional Long Short-Term Memory)的神经网络结构的命名实体识别方法。该方法不再直接依赖于人工特征和领域知识,而是利用基于上下文的词向量和基于字的词向量,前者表达命名实体的上下文信息,后者表达构成命名实体的前缀、后缀和领域信息;同时,利用标注序列中标签之间的相关性对BLSTM的代价函数进行约束,并将领域知识嵌入模型的代价函数中,进一步增强模型的识别能力。实验表明,所提方法的识别效果优于传统方法。 展开更多
关键词 blstm 命名实体 词向量 代价函数
在线阅读 下载PDF
基于DTW的注意力机制BLSTM在线手写签名认证 被引量:3
9
作者 王乐乐 栾方军 +1 位作者 师金钢 袁帅 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1529-1534,共6页
为了提高在线手写签名认证的准确率,设计了一种挖掘签名稳定笔段用于认证的方法.本文提出对签名笔段计算累计差异值矩阵进行匹配;其次采用动态时间规划(DTW)算法计算笔段稳定度;在此基础上,通过以笔段的特征输入双向长短期记忆网络(BLS... 为了提高在线手写签名认证的准确率,设计了一种挖掘签名稳定笔段用于认证的方法.本文提出对签名笔段计算累计差异值矩阵进行匹配;其次采用动态时间规划(DTW)算法计算笔段稳定度;在此基础上,通过以笔段的特征输入双向长短期记忆网络(BLSTM)加注意机制进行处理,从而得到每个用户的稳定签名段集合;最后提取该集合的特征进行分类.该方法在svc2004数据库上进行验证并得到了97.08%的认证率,并在40个用户上取得了1.16%的等误率.该结果表明本文方法能够提高认证精度,并且验证了BLSTM与稳定笔段结合方法的有效性. 展开更多
关键词 签名认证 签名分段 双向长短期记忆网络(blstm) 注意力机制
在线阅读 下载PDF
交通信息标准条款BLSTM和CNN链式模型分类方法 被引量:1
10
作者 范维克 张绍阳 +1 位作者 陈博远 王珂 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2020年第2期143-148,共6页
为了有效获取交通运输信息标准中的一致性条款,简化标准测试方法,针对现有文本分类方法中卷积神经网络存在的缺少上下文含义和循环神经网络存在的梯度消失及梯度弥散等问题,提出一种基于BLSTM的文本增强表示方法和基于CNN网络的语句分... 为了有效获取交通运输信息标准中的一致性条款,简化标准测试方法,针对现有文本分类方法中卷积神经网络存在的缺少上下文含义和循环神经网络存在的梯度消失及梯度弥散等问题,提出一种基于BLSTM的文本增强表示方法和基于CNN网络的语句分类相结合的方法进行一致性条款分类.其核心思想是将BLSTM前向和后向过程产生的向量相加,然后与原文本向量拼接作为文本的向量表示,将文本向量作为CNN网络的输入进行文本分类.为验证所提模型的有效性,设置了与传统机器模型TF-IDF+SVM、单CNN、BLSTM神经网络模型及经典混合模型的对比试验.通过构造的交通运输信息标准条款数据集测试表明,基于改进的BLSTM和CNN的链式混合神经网络模型准确率达到93.77%. 展开更多
关键词 文本分类 文本表示 blstm 卷积神经网络 交通信息标准条款 语义增强
在线阅读 下载PDF
基于BLSTM-随机森林的短期光伏发电输出功率预测 被引量:18
11
作者 刘志超 袁三男 唐万成 《电源技术》 CAS 北大核心 2021年第4期495-498,共4页
光伏发电功率具有不确定性和波动性,准确预测光伏发电功率对提高光伏并网效率和保持电网安全运行具有重要作用。对江苏某地区光伏发电站的功率特性进行分析,使用小波降噪处理历史功率曲线,并对各气象条件使用灰色关联分析筛选出强相关... 光伏发电功率具有不确定性和波动性,准确预测光伏发电功率对提高光伏并网效率和保持电网安全运行具有重要作用。对江苏某地区光伏发电站的功率特性进行分析,使用小波降噪处理历史功率曲线,并对各气象条件使用灰色关联分析筛选出强相关影响因素,减少输出功率噪声和无关气象条件对功率预测的影响。将小波降噪处理后的历史输出功率及强相关特性构建数据集,建立基于双向长短期记忆网络(BLSTM)与随机森林的短期光伏发电功率预测模型,并与其他模型的预测误差进行比较。仿真结果表明,提出的BLSTM-随机森林的短期光伏功率预测模型具有较高的预测精度。 展开更多
关键词 光伏功率预测 小波降噪 灰色关联分析 blstm 随机森林
在线阅读 下载PDF
基于改进的多层BLSTM的中文分词和标点预测 被引量:10
12
作者 李雅昆 潘晴 Everett X.WANG 《计算机应用》 CSCD 北大核心 2018年第5期1278-1282,1314,共6页
目前主流的序列标注问题是基于循环神经网络(RNN)实现的。针对RNN和序列标注问题进行研究,提出了一种改进型的多层双向长短时记忆(BLSTM)网络,该网络每层的BLSTM都有一次信息融合,输出包含更多的上下文信息。另外找到一种基于序列标注... 目前主流的序列标注问题是基于循环神经网络(RNN)实现的。针对RNN和序列标注问题进行研究,提出了一种改进型的多层双向长短时记忆(BLSTM)网络,该网络每层的BLSTM都有一次信息融合,输出包含更多的上下文信息。另外找到一种基于序列标注的可以并行执行中文分词和标点预测的联合任务方法。在公开的数据集上的实验结果表明,所提出的改进型的多层BLSTM网络模型性能优越,提升了中文分词和标点预测的分类精度;在需要完成中文分词和标点预测两项任务时,联合任务方法能够大幅地降低系统复杂度;新的模型及基于该模型的联合任务方法也可应用到其他序列标注任务中。 展开更多
关键词 中文分词 标点预测 序列标注 双向长短时记忆网络
在线阅读 下载PDF
融合位置注意力机制和改进BLSTM的食品评论情感分析 被引量:10
13
作者 李勇 金庆雨 张青川 《郑州大学学报(工学版)》 CAS 北大核心 2020年第1期58-62,共5页
为了对食品评价的情感倾向进行更加精确的分类,在进行情感语义分析时,卷积神经网络(convolutional neural networks,CNN)方法情感分析是近年来自然语言处理领域的研究热点。然而,目前现有的深度学习模型在对文本句子进行情感分析时缺少... 为了对食品评价的情感倾向进行更加精确的分类,在进行情感语义分析时,卷积神经网络(convolutional neural networks,CNN)方法情感分析是近年来自然语言处理领域的研究热点。然而,目前现有的深度学习模型在对文本句子进行情感分析时缺少研究情感词位置对整个情感分析的重要性。在对电商商品评论数据进行情感语义分析时,CNN方法在提取目标的结构特征方面具有一定的优势,可以提取到多种局部特征,循环神经网络(recurrent neural networks,RNN)具有记忆功能,在序列特征提取方面具有一定的优势,双向长短时记忆网络(bidirectional long short-term memory,BLSTM)在提取远距离依赖序列语义特征方面可以得到很好的效果。在BLSTM的基础上,又引入基于食品领域的语义角色标注与位置相结合的位置注意力机制,来实现距离相关的序列语义特征提取,利用CNN实现序列语义特征的情感语义分类,从而构造出了一种基于BLSTM和位置注意力机制的食品评论情感分析模型。实验结果表明,设计的模型在情感分类方面取得了很好的分类效果,与之前的情感分类模型进行比较,在准确率结果上有所提高。 展开更多
关键词 情感分析 评论 双向长短时记忆网络 卷积神经网络 位置注意力机制
在线阅读 下载PDF
基于CNN-BLSTM的化妆品违法违规行为分类模型 被引量:1
14
作者 胡康 何思宇 +1 位作者 左敏 葛伟 《智能系统学报》 CSCD 北大核心 2021年第6期1151-1157,共7页
针对化妆品安全监管部门抽样检测所含违法违规行为自动识别且分类困难的问题,建立语义分类自动识别模型,辅助有关部门构建智能化管理体系,依靠数据实现科学决策及有效监管。本文分别使用中文词向量及字向量作为双路模型输入,采用CNN(con... 针对化妆品安全监管部门抽样检测所含违法违规行为自动识别且分类困难的问题,建立语义分类自动识别模型,辅助有关部门构建智能化管理体系,依靠数据实现科学决策及有效监管。本文分别使用中文词向量及字向量作为双路模型输入,采用CNN(convolutional neural network)网络模型训练字向量,BLSTM(bidirectional long short-term memory)网络模型训练词向量,并在BLSTM中引入位置注意力机制,构建基于CNNBLSTM的字词双维度化妆品违法违规行为分类模型。在染发类化妆品抽样检测数据集上进行的对比实验结果表明,CNN-BLSTM模型准确率比常用的几种深度神经网络模型均有明显提高,验证了其合理性和有效性。 展开更多
关键词 化妆品 双维度模型 自然语言处理 位置感知 注意力机制 卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于CDAE和TCN/BLSTM模型的电能质量扰动分类方法 被引量:6
15
作者 代义东 陆之洋 +3 位作者 熊炜 袁旭峰 徐玉韬 谈竹奎 《智慧电力》 北大核心 2023年第12期59-66,共8页
随着新型电力系统中电能质量扰动(PQDs)愈加复杂,为提升PQDs分类准确率并增强算法的噪声鲁棒性,将卷积降噪自编码器(CDAE)、时域卷积网络(TCN)与双向长短期记忆(BLSTM)相结合,提出一种基于CDAE和TCN/BLSTM模型的电能质量扰动分类方法。... 随着新型电力系统中电能质量扰动(PQDs)愈加复杂,为提升PQDs分类准确率并增强算法的噪声鲁棒性,将卷积降噪自编码器(CDAE)、时域卷积网络(TCN)与双向长短期记忆(BLSTM)相结合,提出一种基于CDAE和TCN/BLSTM模型的电能质量扰动分类方法。首先,通过CDAE以原始信号为目标重构含噪信号;然后,利用TCN和BLSTM并行挖掘扰动的抽象和时序特征;最后,特征合并层融合两种特征并完成分类。仿真结果表明,该方法可有效分类强噪声下的20类PQDs信号且平均准确率达99.23%,相比于其他主流的分类方法,所提方法具有更好的分类效果和抗噪性能。 展开更多
关键词 电能质量扰动 卷积降噪自编码器 时域卷积网络 双向长短期记忆
在线阅读 下载PDF
基于CNN-BLSTM的食品舆情实体关系抽取模型研究 被引量:7
16
作者 王庆棒 汪颢懿 +3 位作者 左敏 张青川 温馨 袁玉梅 《食品科学技术学报》 CAS CSCD 北大核心 2021年第2期152-158,共7页
食品舆情实体关系抽取是构建食品舆情知识图谱的关键技术,也是当前信息抽取领域的重要研究课题。针对食品舆情中常出现的实体对多关系问题,在卷积神经网络(convolutional neural network,CNN)中引入基于位置感知的领域词语义注意力机制... 食品舆情实体关系抽取是构建食品舆情知识图谱的关键技术,也是当前信息抽取领域的重要研究课题。针对食品舆情中常出现的实体对多关系问题,在卷积神经网络(convolutional neural network,CNN)中引入基于位置感知的领域词语义注意力机制;在双向长短时记忆(bidirectional long short-term memory,BLSTM)网络中引入基于位置感知的语义角色注意力机制,构建基于CNN-BLSTM的食品舆情实体关系抽取模型。在食品舆情数据集上进行了对比实验,实验结果表明:基于CNN-BLSTM的食品舆情实体关系抽取模型在食品舆情数据集上准确率比常用的几种深度神经网络模型高出8.7%~13.94%,验证了模型的合理性和有效性。 展开更多
关键词 实体关系抽取 注意力机制 位置感知 语义角色标注 卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
一种用于人体行为识别的CNN-BLSTM模型 被引量:5
17
作者 邹小武 盛蒙蒙 +1 位作者 毛家发 盛伟国 《小型微型计算机系统》 CSCD 北大核心 2019年第11期2313-2317,共5页
基于加速度计等多传感器融合的人体行为识别研究一般是通过提取特征值并利用分类器完成行为识别,因此数据特征的提取和分类器选择是该领域主要问题.针对行为特征提取和分类问题,本文提出一种基于CNN-BLSTM模型的人体行为识别方法.首先... 基于加速度计等多传感器融合的人体行为识别研究一般是通过提取特征值并利用分类器完成行为识别,因此数据特征的提取和分类器选择是该领域主要问题.针对行为特征提取和分类问题,本文提出一种基于CNN-BLSTM模型的人体行为识别方法.首先将加速度数据转换为张量形式,然后利用卷积神经网络(CNN)提取张量特征,接着将提取的特征输入双向长短期记忆网络(BLSTM)中,完成人体的行为识别.由于CNN在特征提取方面具有较好的性能,能够完整地提取特征,且行为动作在时间前后关联性较强,因此CNN-BLSTM模型具有较强的识别率.我们在WISDM数据集上进行了测试实验,结果显示所提方法对人体行为的平均识别率(多次独立重复实验的平均结果)达到了96. 95%. 展开更多
关键词 行为识别 加速度 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于注意力和双向LSTM的评价对象类别判定 被引量:4
18
作者 周陈超 陈群 +3 位作者 李战怀 赵波 胥勇军 秦阳 《西北工业大学学报》 EI CAS CSCD 北大核心 2019年第3期558-564,共7页
在线评论在用户的购买决策中起到日益重要的作用,电商网站提供海量的用户评论,但是个体很难充分利用所有信息。因此,对这些评论进行分类、分析和汇总是很迫切的任务。首次提出一个基于注意力机制和双向LSTM(bi-directional long short-t... 在线评论在用户的购买决策中起到日益重要的作用,电商网站提供海量的用户评论,但是个体很难充分利用所有信息。因此,对这些评论进行分类、分析和汇总是很迫切的任务。首次提出一个基于注意力机制和双向LSTM(bi-directional long short-term memory,BLSTM)的模型来判定评论对象的类别,用于评论的分类。模型首先使用BLSTM对词向量形式的评论进行训练;然后根据词性为BLSTM的输出向量赋予相应权重,权重作为先验知识能指导注意力机制的学习;最后使用注意力机制捕捉与类别相关的重要信息用于类别判定。在SemEval数据集上进行了实验,结果表明,模型能有效提高评论对象类别判定的效果,优于其他算法。 展开更多
关键词 用户评论 评论对象类别判定 注意力机制 blstm
在线阅读 下载PDF
面向微博子话题检测的BTM模型研究 被引量:6
19
作者 曹春萍 李瑜 《小型微型计算机系统》 CSCD 北大核心 2022年第10期2090-2095,共6页
现今网络舆情传播速度快、影响力大,研究微博网络中舆情信息的话题检测对有关部门舆情治理以及应急处置具有重要意义.针对传统话题检测方法忽略了微博中更细粒度的子话题研究,并且检测的话题缺乏深层次的语义信息问题,本文将attention... 现今网络舆情传播速度快、影响力大,研究微博网络中舆情信息的话题检测对有关部门舆情治理以及应急处置具有重要意义.针对传统话题检测方法忽略了微博中更细粒度的子话题研究,并且检测的话题缺乏深层次的语义信息问题,本文将attention机制与BLSTM融入到BTM模型中,构建词对主题模型ATT-BLSTM-BTM.该模型通过BLSTM训练词与词之间的相互关系,同时,利用attention机制计算特征词注意力概率分布,以降低语料库中无关词汇对建模的影响,从而提高BTM模型检测子话题的精准性.实验结果显示,本文模型与传统的LDA、BTM和NTM模型相比,生成的子话题在KL值与PMI值上都有明显的提升,证明本文所提模型能够生成质量更高的子话题. 展开更多
关键词 子话题检测 BTM模型 attention机制 blstm模型
在线阅读 下载PDF
基于循环神经网络的人体行为识别 被引量:12
20
作者 宿通通 孙华志 +1 位作者 马春梅 姜丽芬 《天津师范大学学报(自然科学版)》 CAS 北大核心 2018年第6期58-62,76,共6页
使用4种类型的循环神经网络模型(RNN、GRU、LSTM、BLSTM)处理手机传感器采集的异构时间序列数据,用于人体行为识别研究.针对4种模型,分别构建自动特征提取方法,并对参数设置进行优化.在公开数据集UCI HAR上进行了行为识别测试实验,实验... 使用4种类型的循环神经网络模型(RNN、GRU、LSTM、BLSTM)处理手机传感器采集的异构时间序列数据,用于人体行为识别研究.针对4种模型,分别构建自动特征提取方法,并对参数设置进行优化.在公开数据集UCI HAR上进行了行为识别测试实验,实验结果表明,BLSTM模型的识别精度高达95.7%,可以有效地用于行为识别,其识别率和性能优于其他3种循环神经网络,且高于卷积神经网络深度学习方法. 展开更多
关键词 行为识别 时序数据 循环神经网络 blstm
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部