期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
基于AWOA-BI-LSTM的光伏发电功率预测 被引量:1
1
作者 吴仕宏 张璧臣 +1 位作者 吴佳文 武兴宇 《沈阳农业大学学报》 北大核心 2025年第2期131-143,共13页
[目的]光伏发电功率的准确预测对可再生能源整合到电网、市场和建筑能源管理系统中至关重要。为提高预测精度,本研究提出一种基于改进鲸鱼优化算法(AWOA)和双向长短期记忆网络(Bi-LSTM)的混合模型(AWOA-Bi-LSTM)。针对传统鲸鱼优化算法(... [目的]光伏发电功率的准确预测对可再生能源整合到电网、市场和建筑能源管理系统中至关重要。为提高预测精度,本研究提出一种基于改进鲸鱼优化算法(AWOA)和双向长短期记忆网络(Bi-LSTM)的混合模型(AWOA-Bi-LSTM)。针对传统鲸鱼优化算法(WOA)寻优精度低、收敛速度慢的问题,提出动态权重因子和自适应参数调整两种改进策略,以增强模型的全局搜索能力和收敛效率。[方法]利用实际光伏发电数据和实测气象数据将AWOA-Bi-LSTM和WOA-Bi-LSTM以及GRNN进行对比实验。[结果]其中AWOA-Bi-LSTM在测试集和训练集上的R^(2)值分别为0.99701和0.99843;测试集和训练集的RMSE分别为1.585和0.90063。测试集RPD为20.1604,训练集RPD为25.9357。[结论]AWOA-Bi-LSTM在拟合度、预测精度和稳定性方面均优于传统方法,能够更有效地捕捉时间序列数据中的复杂模式和趋势,显著提升预测性能。 展开更多
关键词 光伏发电 功率预测 lstm bi-lstm WOA算法
在线阅读 下载PDF
基于数据预处理和Bi-LSTM的智能电网预测方法 被引量:2
2
作者 李岩 刘鑫月 +3 位作者 乔俊杰 王毛桃 刘一帆 齐磊杰 《电测与仪表》 北大核心 2025年第6期120-125,共6页
短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精... 短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。 展开更多
关键词 短期预测 数据预处理 bi-lstm 深度学习 时间序列
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
3
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于VMD-Bi-LSTM和V2G的山地城市风光消纳率提升策略
4
作者 蔡黎 商冰洁 +4 位作者 徐青山 晏娟 卞海红 张一 邹小江 《电力科学与技术学报》 北大核心 2025年第3期154-162,共9页
针对目前风电、光伏等新能源的弃能现象,提出一种促进风光消纳的电动汽车有序充放电策略。该策略利用电网互动技术,在山地城市的背景下,以最大化区域内风光消纳率、最小化电力负荷波动和最大化电力公司的售电效益为目标,建立多目标充电... 针对目前风电、光伏等新能源的弃能现象,提出一种促进风光消纳的电动汽车有序充放电策略。该策略利用电网互动技术,在山地城市的背景下,以最大化区域内风光消纳率、最小化电力负荷波动和最大化电力公司的售电效益为目标,建立多目标充电模型。日前采用变分模态分解结合双向长短时记忆网络预测风电、光伏出力,根据风电、光伏的出力值划分出力时段并设置动态电价,以自适应粒子群算法、Yalmip+Cplex以及CVX工具箱进行求解。算例结果表明,当用户车网互动(vehicle-to-grid,V2G)响应度为30%、60%、100%时,风光消纳率分别为83.73%、89.12%、97.11%,电力负荷波动性分别下降41.89%、44.46%、47.32%,同时保证电力公司的售电效益。 展开更多
关键词 电动汽车 有序充电 电动汽车与电网互动 山地城市 风光预测 双向长短时记忆网络
在线阅读 下载PDF
融合Bi-LSTM与多头注意力的分层强化学习推理方法 被引量:3
5
作者 李卫军 刘世侠 +3 位作者 刘雪洋 丁建平 苏易礌 王子怡 《计算机应用研究》 北大核心 2025年第1期71-77,共7页
知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法。将知识图谱通过谱聚类分簇,使智能体分... 知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法。将知识图谱通过谱聚类分簇,使智能体分别在簇与实体间进行推理,利用Bi-LSTM与多头注意力机制融合模块对智能体的历史信息进行处理,可以更有效地发现和利用知识图谱隐藏的语义信息。Hight智能体通过分层策略网络选择目标实体所在的簇,指导Low智能体进行实体间的推理。利用强化学习智能体可以有效地解决可解释性差的问题,并通过相互奖励机制对两个智能体的动作选择以及搜索路径给予奖励,以解决智能体奖励稀疏的问题。在FB15K-237、WN18RR、NELL-995三个公开数据集上的实验结果表明,提出的方法能够捕捉序列数据中的长期依赖关系对长路径进行推理,并且在推理任务中的性能优于同类方法。 展开更多
关键词 知识推理 分层强化学习 bi-lstm 多头注意力机制
在线阅读 下载PDF
基于Bi-LSTM网络的游标传感器输出解调技术 被引量:1
6
作者 曾心 郭茂森 +2 位作者 张昕 丁晖 胡红利 《光谱学与光谱分析》 北大核心 2025年第5期1257-1263,共7页
针对光学游标传感器输出解调难的问题,提出基于双向长短时记忆(Bi-LSTM)网络的光谱数据预测技术。利用Bi-LSTM网络对数据序列的预测能力,实现了宽光谱范围的光谱数据预测,从而解决了游标传感器由于工作光谱范围有限的光源或光谱扫描技术... 针对光学游标传感器输出解调难的问题,提出基于双向长短时记忆(Bi-LSTM)网络的光谱数据预测技术。利用Bi-LSTM网络对数据序列的预测能力,实现了宽光谱范围的光谱数据预测,从而解决了游标传感器由于工作光谱范围有限的光源或光谱扫描技术,而导致游标传感器难以实现输出解调的技术难题。采用该方法,只要采集有限波长范围的传感器输出光谱,利用训练好的Bi-LSTM模型就能够在较宽的波长范围内准确预测传感器输出光谱的包络曲线,从而极大降低了对游标传感器工作光谱范围的技术要求。介绍了Bi-LSTM网络用于游标传感器输出解调的基本原理和实现过程,实验证明了该方法对游标传感器输出光谱数据预测的准确性,其预测曲线与实际光谱包络在波峰处的波长最大误差~0.02 nm,幅值最大误差仅为0.058%。验证了Bi-LSTM网络对具有不同包络周期的游标传感器输出解调的泛化性,针对不同包络周期的游标传感器输出光谱,其最大预测误差为0.02 nm,最大均方根误差(RMSE)为9.72×10^(-5),证明了所训练的Bi-LSTM网络对不同包络周期的游标传感器输出光谱都具有准确的“预测性”和“跟踪度”。研究表明,实际工作中只要光源的波长范围能够覆盖游标传感器的1/2个光谱包络周期(绝大多数情况下可以满足),利用Bi-LSTM网络能够在宽光谱范围内,实现对传感器输出光谱的准确预测,从而极大降低了对游标传感器的工作光源(或其他光谱扫描技术)的光谱范围的要求。本研究解决了游标传感器的输出解调光谱范围过宽的难题,具有理论及实际应用意义。 展开更多
关键词 光学游标传感器 自由光谱范围 光谱预测 bi-lstm网络
在线阅读 下载PDF
数控铣床主轴热误差Bi-LSTM预测建模 被引量:1
7
作者 马宏宇 尹志宏 +2 位作者 叶愈 南朋涛 朱升硕 《机床与液压》 北大核心 2025年第14期51-57,共7页
为探究数控铣床复杂热源导致的主轴温升与热误差之间的非线性映射关系,提出一种基于双向长短期记忆神经网络(Bi-LSTM)的主轴热误差预测模型。以国产某型号精密数控铣床主轴单元为研究对象,采用激光位移传感器对主轴空转状态下的轴向热... 为探究数控铣床复杂热源导致的主轴温升与热误差之间的非线性映射关系,提出一种基于双向长短期记忆神经网络(Bi-LSTM)的主轴热误差预测模型。以国产某型号精密数控铣床主轴单元为研究对象,采用激光位移传感器对主轴空转状态下的轴向热误差进行测量,借助温度传感器采集主轴关键温度测点的温度。采用萨维茨基-戈莱滤波器对主轴温升、热误差数据进行滤波降噪处理,使用手肘法确定最佳聚类数,利用模糊C均值聚类结合灰色关联度分析(FCM+GRA)方法完成温度敏感点的选取,避免温度测点之间多重共线性问题。最后,以主轴轴向热误差和温度敏感点温升数据为输入,建立主轴热误差Bi-LSTM预测模型,并基于平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和相关性系数R 2对模型的预测效果进行评估。结果表明:与LSTM(单向长短期记忆神经网络)、GRU(门控循环单元)和BPNN(反向传播神经网络)相比,Bi-LSTM预测模型的MAE分别降低了18.5%、21.8%、44.1%,RMSE分别降低了9.5%、20.2%、43.8%。因此,Bi-LSTM主轴热误差预测模型具有更高的鲁棒性和准确性。 展开更多
关键词 数控机床 主轴热误差 FCM+GRA算法 bi-lstm模型 热误差预测
在线阅读 下载PDF
基于深度残差Bi-LSTM的风电功率预测
8
作者 叶利娟 裴生雷 +1 位作者 董时 谭琳 《现代电子技术》 北大核心 2025年第20期113-119,共7页
深度学习模型在风电功率预测方面通常比传统机器学习模型表现更佳。然而,随着网络层数的增加,性能提升往往受到网络退化问题的阻碍。针对此问题,提出一种结合深度残差结构与双向长短期记忆(Bi-LSTM)网络的风电功率预测技术。该方法通过... 深度学习模型在风电功率预测方面通常比传统机器学习模型表现更佳。然而,随着网络层数的增加,性能提升往往受到网络退化问题的阻碍。针对此问题,提出一种结合深度残差结构与双向长短期记忆(Bi-LSTM)网络的风电功率预测技术。该方法通过引入残差连接增强深层Bi-LSTM网络的训练稳定性,同时捕捉风电数据的长期时序依赖。此外,采用Adam算法优化模型超参数,并在青海某风电企业数据集上对该方法进行了实证测试。实验结果表明,与支持向量回归(SVR)、标准LSTM模型和Bi-LSTM模型相比,深度残差Bi-LSTM模型在风电功率预测方面展现出显著优势:其MAE预测误差仅为61.55,远低于其他三种方法的MAE;而决定系数R^(2)值高达0.9377,表明模型具有良好的拟合度和预测准确性。这充分证明了深度残差Bi-LSTM模型在风电功率预测领域的潜力和价值。 展开更多
关键词 风电功率预测 深度残差 bi-lstm 残差连接 Adam优化算法 超参数优化
在线阅读 下载PDF
基于Bi-LSTM与SA融合模型的多台阶高陡边坡变形预测 被引量:1
9
作者 曾森华 赵宇 +2 位作者 叶腾飞 贺平 郝文拯 《有色金属科学与工程》 北大核心 2025年第1期125-134,共10页
露天矿边坡变形易受岩石类型、岩体结构特征、水文地质、自然环境与采矿活动等因素影响,进而造成边坡变形监测数据具有高度的时序关联性、时变性、高维性及非线性等特点。针对传统边坡变形预测模型无法挖掘监测数据序列前后依赖性的问题... 露天矿边坡变形易受岩石类型、岩体结构特征、水文地质、自然环境与采矿活动等因素影响,进而造成边坡变形监测数据具有高度的时序关联性、时变性、高维性及非线性等特点。针对传统边坡变形预测模型无法挖掘监测数据序列前后依赖性的问题,提出了一种双向长短期记忆网络(Bi-LSTM)与自注意力机制(SA)融合算法的多台阶高陡边坡变形预测模型,实现对多台阶高陡边坡变形的有效预测。结果表明:在相同的输入条件下,相较于BP神经网络、LSTM模型与Bi-LSTM模型预测结果,Bi-LSTM-SA融合模型对多台阶高边坡在3个监测方向的变形预测结果整体预测误差更小,Bi-LSTM-SA融合模型的预测结果与实测结果更为接近;Bi-LSTM-SA融合模型预测性能更强,而且还表现出了更好的稳定性与鲁棒性。 展开更多
关键词 露天矿 多台阶 高陡边坡 bi-lstm-SA 变形预测
在线阅读 下载PDF
基于增强Bi-LSTM的船舶运动模型辨识 被引量:1
10
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 雷鹏 《中国舰船研究》 北大核心 2025年第1期76-84,共9页
[目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提... [目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提取。基于此,设计一维卷积神经网络(1D-CNN)提取序列的空间维度特征。然后,采用多头自注意力机制(MHSA)多角度对序列进行自适应加权处理。利用KVLCC2船舶航行数据,将所提增强Bi-LSTM模型与支持向量机(SVM)、门控循环单元(GRU)、长短期记忆神经网络(LSTM)模型的预测效果进行对比。[结果]所提增强Bi-LSTM模型在测试集中均方根误差(RMSE)、平均绝对误差(MAE)性能指标分别低于0.015和0.011,决定系数(R2)高于0.99913,预测精度显著高于SVM,GRU,LSTM模型。[结论]增强Bi-LSTM模型泛化性能优异,预测稳定性及预测精度高,有效实现了船舶的运动模型辨识。 展开更多
关键词 系统辨识 非参数化建模 一维卷积神经网络 双向长短期记忆神经网络 多头自注意力机制
在线阅读 下载PDF
基于Bi-LSTM网络的封装基板翘曲预测模型
11
作者 王昊舟 王珺 《半导体技术》 北大核心 2025年第10期1057-1066,共10页
针对封装基板的翘曲预测问题,提出一种基于循环神经网络(RNN)与双向长短期记忆(Bi-LSTM)网络相结合的机器学习方法,构建封装基板翘曲预测模型。该模型可预测非对称基板翘曲分布,并有效提高预测效率与准确性。为获取模型训练所需数据集,... 针对封装基板的翘曲预测问题,提出一种基于循环神经网络(RNN)与双向长短期记忆(Bi-LSTM)网络相结合的机器学习方法,构建封装基板翘曲预测模型。该模型可预测非对称基板翘曲分布,并有效提高预测效率与准确性。为获取模型训练所需数据集,开发了随机游走自动布线算法,生成不同特征的基板布线结构,并利用铜迹线强化有限元分析(FEA)方法获取翘曲分布数据。研究结果表明,Bi-LSTM网络模型在80个训练周期内误差收敛至0.05 mm^(2)以下,结构相似性衡量指标(SSIM)均大于0.7;在非训练集铜布线验证样本上表现出良好的泛化能力,并且预测时间仅需数秒,预测速度显著快于FEA,为基板设计提供了快速、准确的翘曲预测新途径,有助于提高优化迭代效率。 展开更多
关键词 双向长短期记忆(bi-lstm)网络 基板翘曲分布 封装仿真 有限元分析(FEA) 机器学习
在线阅读 下载PDF
基于改进CNN-Bi-LSTM模型故障诊断与改进随机森林模型的湿法冶金流程评价研究
12
作者 郭静博 《湿法冶金》 北大核心 2025年第4期567-575,共9页
为解决目前的故障诊断模型较为简单、泛化能力较弱等问题,采用改进CNN-Bi-LSTM模型进行湿法冶金流程故障诊断,再根据故障诊断的结果数据,采用改进随机森林模型进行湿法冶金全流程的评价。结果表明:故障诊断准确率达90.7%,远超该工厂原... 为解决目前的故障诊断模型较为简单、泛化能力较弱等问题,采用改进CNN-Bi-LSTM模型进行湿法冶金流程故障诊断,再根据故障诊断的结果数据,采用改进随机森林模型进行湿法冶金全流程的评价。结果表明:故障诊断准确率达90.7%,远超该工厂原有基于经验规则的诊断系统的准确率(78.4%),且模型的故障检测响应时间控制在2 s内,确保了工艺过程中的实时监控和快速响应。 展开更多
关键词 CNN-bi-lstm 随机森林 数值仿真 实证研究 故障诊断
在线阅读 下载PDF
基于Bi-LSTM与改进NSGAⅢ的混凝土配合比多目标优化
13
作者 黄斌彬 曾磊 +2 位作者 汪超 孙良福 胡高兴 《材料导报》 北大核心 2025年第19期122-129,共8页
针对混凝土配合比优化过程中涉及的多变量、多目标以及非线性问题,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)与改进的第三代非支配排序遗传算法(NSGAⅢ)的求解模式。该模式首先构建了Bi-LSTM模型预测混凝土抗压强度数据驱动方法,... 针对混凝土配合比优化过程中涉及的多变量、多目标以及非线性问题,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)与改进的第三代非支配排序遗传算法(NSGAⅢ)的求解模式。该模式首先构建了Bi-LSTM模型预测混凝土抗压强度数据驱动方法,从而准确地捕捉配合比与抗压强度之间的非线性关系;在此基础上,采用NSGAⅢ算法完成了抗压强度、材料成本和碳排放量等多目标优化设计。配合比优化过程中,采用了结合自适应变异和端点扰动的改进策略来提高NSGAⅢ算法的多目标优化性能。结果表明:Bi-LSTM模型可准确地预测抗压强度,在测试集中预测值与实际值的相关系数为0.95、均方根误差为5.3、平均绝对误差为4.1,模型预测精度和泛化能力均优于其他模型,具有更高的混凝土抗压强度预测精度。改进NSGAⅢ算法在配合比优化性能方面超越了传统的多目标粒子群(MOPSO)、NSGAII和NSGAⅢ等算法。该成果可为工程实践中混凝土配合比优化设计提供参考。 展开更多
关键词 混凝土配合比设计 抗压强度预测 多目标优化 bi-lstm 改进NSGAⅢ
在线阅读 下载PDF
基于Bi-LSTM算法的露天矿山爆破振动速度预测
14
作者 张伟 倪彬 +2 位作者 王立 谢伟 魏士钰 《矿冶工程》 北大核心 2025年第1期21-26,共6页
针对传统公式对爆破振动预测精度不高的问题,构建了基于Bi-LSTM(双向长短期记忆网络)算法的露天矿山爆破振动速度预测模型。该模型可以在两个方向上处理时间序列数据,同时捕获过去和未来的上下输入信息与输出数据之间的依赖关系。以马... 针对传统公式对爆破振动预测精度不高的问题,构建了基于Bi-LSTM(双向长短期记忆网络)算法的露天矿山爆破振动速度预测模型。该模型可以在两个方向上处理时间序列数据,同时捕获过去和未来的上下输入信息与输出数据之间的依赖关系。以马钢集团高村铁矿露天矿山爆破开采监测数据为依据,选取相关数据为输入参数,并将Bi-LSTM预测结果与萨道夫斯基公式预测结果进行对比。结果表明:萨道夫斯基公式预测的爆破振动速度平均误差为26.87%,Bi-LSTM算法预测的爆破振动速度平均误差为8.95%;Bi-LSTM模型预测结果与实测结果具有较高的吻合度。后期将以其他矿山的监测数据为依托对模型进行训练,以提高Bi-LSTM模型的泛化能力,并通过迁移学习植入矿山安全实时监测预警平台。 展开更多
关键词 露天矿山 爆破振动 振动速度 预测模型 bi-lstm 深度学习算法
在线阅读 下载PDF
基于Bi-LSTM模型的网络舆情对旅游业发展动态的影响
15
作者 韩凤彩 吴家雯 李慧彤 《绿色科技》 2025年第15期200-205,共6页
社交媒体普及下,网络舆情深刻影响旅游业,两者形成紧密的动态关联。本研究聚焦于社交媒体时代,以微博淄博旅游评论为例,分析网络舆情与旅游业发展的动态关系。通过收集一定时期内微博评论,运用文本分析方法进行情感倾向与主题挖掘,量化... 社交媒体普及下,网络舆情深刻影响旅游业,两者形成紧密的动态关联。本研究聚焦于社交媒体时代,以微博淄博旅游评论为例,分析网络舆情与旅游业发展的动态关系。通过收集一定时期内微博评论,运用文本分析方法进行情感倾向与主题挖掘,量化舆情关注度指标。采用Bi-LSTM模型进行实证分析,融合RNN与LSTM的优势,精准捕捉舆情与旅游业的复杂关系,提供市场预测与决策支持。结合全连接层分类器,确定文本情感属性。研究结论对理解社交媒体在旅游业发展中的作用具有重要意义,并为旅游管理部门制定基于数据驱动的营销策略提供了科学依据,助力决策者提前预测并应对用户情感倾向。 展开更多
关键词 网络舆情 旅游业 文本分析 bi-lstm模型
在线阅读 下载PDF
采用双向LSTM自编码器的驾驶风格谱聚类识别研究 被引量:4
16
作者 梁科 陈华晟 +1 位作者 潘明章 叶宇 《重庆理工大学学报(自然科学)》 北大核心 2023年第10期28-37,共10页
不同驾驶风格的分类对驾驶安全、道路设计和燃油经济性具有深远的影响。考虑到驾驶风格受驾驶员即时操作和前后操作的影响,提出了一种采用双向LSTM自编码器的谱聚类模型对驾驶风格进行识别,以反映驾驶数据时序性对驾驶风格识别的影响。... 不同驾驶风格的分类对驾驶安全、道路设计和燃油经济性具有深远的影响。考虑到驾驶风格受驾驶员即时操作和前后操作的影响,提出了一种采用双向LSTM自编码器的谱聚类模型对驾驶风格进行识别,以反映驾驶数据时序性对驾驶风格识别的影响。首先利用鲸鱼优化算法对驾驶过程生成的自然驾驶数据进行特征选择,再利用基于双向LSTM的自编码器模型,获得用于谱嵌入的特征值和特征向量,并最终通过谱聚类对驾驶风格进行识别。应用本文中所提出的方法对真实驾驶数据进行比较分析。结果表明:该方法在聚类的精确性优于SOM和LSTM-谱聚类方法。此外,该方法还能在降低数据特征的情况下有效地识别驾驶员的驾驶风格,并反映驾驶员的操作策略。 展开更多
关键词 驾驶风格识别 双向lstm 自编码器 谱聚类
在线阅读 下载PDF
基于DKF-Bi-LSTM的阀控式铅酸电池SOC在线估计方法 被引量:1
17
作者 李练兵 刘艳杰 +3 位作者 王海良 李思佳 李秉宇 杜旭浩 《中国测试》 CAS 北大核心 2024年第2期28-37,共10页
精准估计阀控式铅酸蓄电池的荷电状态(SOC)对变电站直流系统的可靠性和安全性有着重要的作用,为提高SOC估算精度,提出一种基于DKF-Bi-LSTM的铅酸蓄电池SOC在线估计方法,基于二级结构的双卡尔曼滤波算法,分别进行模型估计和状态估计。通... 精准估计阀控式铅酸蓄电池的荷电状态(SOC)对变电站直流系统的可靠性和安全性有着重要的作用,为提高SOC估算精度,提出一种基于DKF-Bi-LSTM的铅酸蓄电池SOC在线估计方法,基于二级结构的双卡尔曼滤波算法,分别进行模型估计和状态估计。通过卡尔曼滤波算法对模型参数进行动态跟踪,进而基于扩展卡尔曼滤波算法在线估算电池SOC值。将在线估算结果、电流、电压、温度值作为Bi-LSTM神经网络的输入,电池SOC预测值作为网络输出,实现对电池SOC的在线估计。经测试发现,与DKF和Bi-LSTM算法相比,DKF-Bi-LSTM算法的SOC预测均方根误差更小,其SOC在线估计方法具有更高的准确性。 展开更多
关键词 阀控式铅酸电池 荷电状态 等效电路模型 卡尔曼滤波 扩展卡尔曼滤波 双向长短时记忆神经网络
在线阅读 下载PDF
基于改进INFO-Bi-LSTM模型的SO_(2)排放质量浓度预测 被引量:3
18
作者 王琦 柴宇唤 +2 位作者 王鹏程 刘百川 刘祥 《动力工程学报》 CAS CSCD 北大核心 2024年第4期641-649,共9页
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN... 针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。 展开更多
关键词 炉内外联合脱硫 烟气SO_(2)质量浓度 INFO算法 bi-lstm神经网络 Circle混沌映射 自适应t分布
在线阅读 下载PDF
日交通流预测的编码器-解码器深度学习模型研究 被引量:6
19
作者 曹阳 茅一波 施佺 《计算机工程与应用》 CSCD 北大核心 2022年第22期284-290,共7页
精准的日交通流预测是智能交通领域的重要研究内容之一。目前已有的日交通流预测模型大多在短期预测模型的基础上通过多步预测或者多目标预测的方式改进而来。这两种改进方案中,前者对误差的传播更为敏感,而后者则忽视了预测结果的时序... 精准的日交通流预测是智能交通领域的重要研究内容之一。目前已有的日交通流预测模型大多在短期预测模型的基础上通过多步预测或者多目标预测的方式改进而来。这两种改进方案中,前者对误差的传播更为敏感,而后者则忽视了预测结果的时序关系,导致预测模型精度偏低。提出了一种用于日交通流预测的编码器-解码器深度学习模型,首先将长短时记忆网络(long short-term memory,LSTM)作为编码器-解码器模型的基本单元以提高模型捕捉长期依赖关系的能力,其次引入注意力机制调节编码向量的权重以进一步提高模型的预测精度。新的模型是一种典型的序列到序列预测模型,与传统的序列到点的模型相比更加契合日交通流预测的需求。为验证模型的有效性,取美国5号州际公路西雅图段的实际交通流数据进行实验,实验结果表明,提出的预测模型在平均车流密度大于40辆/km的时间段中,其预测结果的平均绝对百分比误差(mean absolute percentage error,MAPE)与LSTM、门控循环单元(gated recurrent unit,GRU)、反向传播(back propagation,BP)神经网络、卷积神经网络(convolutional neural network,CNN)、图卷积网络(graph convolution network,GCN)传统预测模型相比,分别减小了19%、20%、25%、16%、25%。 展开更多
关键词 日交通流预测 编码器-解码器 深度学习 长短时记忆网络(lstm) 注意力机制
在线阅读 下载PDF
基于ATT-CNN-BiLSTM的虚拟编组列车时空轨迹预测 被引量:4
20
作者 柴铭 刘皓元 +2 位作者 苏浩翔 唐涛 刘宏杰 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期80-89,共10页
保障虚拟编组平稳追踪运行的关键问题是实现对列车运行状态的精准预测。针对列车运行过程多变的特点,提出基于融合注意力机制的卷积双向长短期记忆神经网络(ATT-CNN-BiLSTM)的时空轨迹预测方法。针对列车历史运行数据中非正常运行场景... 保障虚拟编组平稳追踪运行的关键问题是实现对列车运行状态的精准预测。针对列车运行过程多变的特点,提出基于融合注意力机制的卷积双向长短期记忆神经网络(ATT-CNN-BiLSTM)的时空轨迹预测方法。针对列车历史运行数据中非正常运行场景稀少产生的数据非均衡问题,利用卷积神经网络和双向长短期记忆网络提取列车运行数据维度之间的特征关联,并增加注意力机制提升泛化能力。同时引入运行时验证方法在线监控预测结果,降低由预测错误造成的行车风险。以成都地铁8号线真实数据为例进行实验,设计5种评价指标,通过基线模型与消融实验对所提ATT-CNN-BiLSTM进行评价,该模型对于异常场景的预测误差至少减小9.626%。 展开更多
关键词 列车状态预测 虚拟编组 深度学习 注意力机制 双向长短期记忆神经网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部