期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进Bert-AutoML的电力文本语义识别算法 被引量:2
1
作者 张全 赵郭燚 +2 位作者 苏媛 朱元极 任海洋 《电子设计工程》 2024年第4期43-46,51,共5页
由于电力调度过程中存在大量重复性电力文本,导致语义识别结果形式与理想形式差距较大。针对该问题,提出了基于改进Bert-AutoML的电力文本语义识别算法。采用基于词块的粒度划分方式,提取电力文本字粒度语义特征。计算语义序列与命名实... 由于电力调度过程中存在大量重复性电力文本,导致语义识别结果形式与理想形式差距较大。针对该问题,提出了基于改进Bert-AutoML的电力文本语义识别算法。采用基于词块的粒度划分方式,提取电力文本字粒度语义特征。计算语义序列与命名实体数据库中语义的相似度,获取多个对应语义序列,构建电力文本语义识别模型。使用自动机器学习法训练模型文本输入,计算输入向量和电力文本库中向量匹配度。结合字符掩码训练策略,将掩盖的内容与背景相联系,得到最终语义识别结果。实验结果表明,该算法语义识别结果呈现段落-结构形式,排列整齐且简洁,与理想识别结果一致。 展开更多
关键词 改进bert语言表示模型 AutoML 电力文本 语义识别
在线阅读 下载PDF
基于BERT在税务公文系统中实现纠错功能
2
作者 袁野 朱荣钊 《现代信息科技》 2020年第13期19-21,共3页
税务公文作为社会政治的产物,具有鲜明的政治性。而撰制公文是一项严肃的工作,必须保持准确、严肃的文体特点。为减轻撰制者和审核者的负担,该实验针对税务系统,利用基于BERT-BiLSTM-CRF的序列标注模型和BERT掩码语言模型的特点,对公文... 税务公文作为社会政治的产物,具有鲜明的政治性。而撰制公文是一项严肃的工作,必须保持准确、严肃的文体特点。为减轻撰制者和审核者的负担,该实验针对税务系统,利用基于BERT-BiLSTM-CRF的序列标注模型和BERT掩码语言模型的特点,对公文句子中常见的单个字错误进行了检错、纠错实验。准确率、召回率和F1值相比传统的纠错方法有着明显的提升。结果表明,基于BERT-BiLSTM-CRF的序列标注模型和BERT掩码语言模型在税务公文检错纠错应用中具有较大价值。 展开更多
关键词 税务公文 bert掩码语言模型 bert-BiLSTM-CRF 序列标注
在线阅读 下载PDF
基于图卷积半监督学习的论文作者同名消歧方法研究 被引量:4
3
作者 盛晓光 王颖 +1 位作者 钱力 王颖 《电子与信息学报》 EI CSCD 北大核心 2021年第12期3442-3450,共9页
为解决学者与成果的精确匹配问题,该文提出了一种基于图卷积半监督学习的论文作者同名消歧方法。该方法使用SciBERT预训练语言模型计算论文题目、关键字获得论文节点语义表示向量,利用论文的作者和机构信息获得论文的合作网络和机构关... 为解决学者与成果的精确匹配问题,该文提出了一种基于图卷积半监督学习的论文作者同名消歧方法。该方法使用SciBERT预训练语言模型计算论文题目、关键字获得论文节点语义表示向量,利用论文的作者和机构信息获得论文的合作网络和机构关联网络邻接矩阵,并从论文合作网络中采集伪标签获得正样本集和负样本集,将这些作为输入利用图卷积神经网络进行半监督学习,获得论文节点嵌入表示进行论文节点向量聚类,实现对论文作者同名消歧。实验结果表明,与其他消歧方法相比,该方法在实验数据集上取得了更好的效果。 展开更多
关键词 同名消歧 图卷积神经网络 bert语言模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部