期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
The impact of the coupling relationship between projectile size and yarn dimension on the ballistic performance of plain weave fabric
1
作者 Kaiying Wang Xuan Zhou +5 位作者 Wenke Ren Yiding Wu Yilei Yu Yi Zhou Lizhi Xu Guangfa Gao 《Defence Technology(防务技术)》 2025年第1期288-303,共16页
Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current r... Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics. 展开更多
关键词 Plain weave fabric ballistic performance Aramid fiber Projectile size ballistic experiment
在线阅读 下载PDF
The superior ballistic performance of highly stretchable and flexible double-face knitted fabrics(DFKF):An experimental investigation
2
作者 Yi Zhou Xiangpeng Xin +3 位作者 Yang Li Yang Zhou Rui Zhang Lizhi Xu 《Defence Technology(防务技术)》 2025年第3期119-136,共18页
When the protective and protected systems are detached,the former can be allowed to absorb the kinetic energy of the impacting projectile through large deformation without considering the back face signature of the la... When the protective and protected systems are detached,the former can be allowed to absorb the kinetic energy of the impacting projectile through large deformation without considering the back face signature of the latter.This paper presents a novel double-face knitted fabric(DFKF)designed for this very impacting scenario.Shooting tests equipped with high-speed camera were used to characterize the ballistic performance with the impact velocities ranging from 100 m/s to 450 m/s.The results showed that the ballistic limits(V_(bl))of DFKF are approximately triple and double that of its counterpart UD and plain fabrics,respectively.For mass-normalized metrics,the specific energy absorption(SEA)is 250%and 350%greater than the UD and plain fabrics at their corresponding V_(bl)s.The quasi-static tests showed that the DFKF displayed greater resilience,crease recovery properties,and flexibility,which also made it an especially better candidate than UD and plain weaves for the design of umbrella surface cloth.It was also found that DFKF is dependent on yarn count and the incorporation of spandex.A prototype anti-ballistic umbrella is manufactured using DFKF made of 200D multi-filament yarn.The ballistic performance is also sensitive to the impact site when the umbrella is subjected to impact. 展开更多
关键词 DFKF ballistic performance SEA RESILIENCE Energy absorption Anti-ballistic umbrella
在线阅读 下载PDF
A methodology to simulate interior and intermediate ballistics with dynamic mesh technique and lumped parameter code
3
作者 G.Guermonprez T.Gaillard +2 位作者 J.Dupays J.Anthoine R.Demarthon 《Defence Technology(防务技术)》 2025年第7期447-464,共18页
The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.F... The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature. 展开更多
关键词 Intermediate ballistics Interior ballistics(IB) Lumped parameter code(LPC) Form function Dynamic mesh
在线阅读 下载PDF
Impact of adhesive layer properties on ceramic multi-layered ballistic armour systems: A review
4
作者 Ethan I.L.Jull Richard Dekker Lucas Amaral 《Defence Technology(防务技术)》 2025年第5期292-303,共12页
The role of the adhesive layer in the ballistic performance of ceramic multi-layer armour system is complex and multi-faceted,often with trade-offs between single-and multi-hit performance.However,research focused on ... The role of the adhesive layer in the ballistic performance of ceramic multi-layer armour system is complex and multi-faceted,often with trade-offs between single-and multi-hit performance.However,research focused on untangling the underlying impact of varying adhesive cohesive or adhesion properties is limited and sometimes appears to provide conflicting conclusions.Comparison between the available studies is also often difficult due to variations in armour systems or ballistic testing being conducted.This review scrutinises the available research,identifying six critical properties of an adhesive layer in determining ballistic performance:elastic modulus,fracture strain,acoustic impedance,tensile bond strength,shear bond strength,and thickness.The impact of each of these properties on ballistic performance is discussed in detail,with clear description of the underlying processes involved,allowing clear optimisation goals to be established depending on the ceramic armour specification. 展开更多
关键词 CERAMIC ballistic Armour ADHESIVE EPOXY POLYURETHANE
在线阅读 下载PDF
Research on the navigation method of high speed differential rotation guided ammunition with ballistic assistance prediction under GNSS denial
5
作者 Ning Liu Kejun Hu +5 位作者 Bin Hu Haorui Li Kai Shen Wenhao Qi Junfang Fan Zhong Su 《Defence Technology(防务技术)》 2025年第7期275-289,共15页
In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differ... In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differential rotating rear-body control-guided projectile to address the situation of satellite signal flickering and loss in projectile navigation systems due to environmental limitations.First,establish the system state and measurement equation when receiving satellite signals normally.Second,a seven-degree-of-freedom external ballistic model is constructed,and the ideal trajectory output from the ballistic model is used to provide the virtual motion state of the projectile,which is input into a filter as a substitute observation when satellite signals are lost.Finally,an adaptive Kalman filter(AKF)is designed,the proposed adaptive Kalman filter can accurately adjust the estimation error covariance matrix and Kalman gain in real-time based on information covariance mismatch.The simulation results show that compared to the classical Kalman filter,it can reduce the average positioning error by more than 38.21%in the case of short-term and full-range loss of satellite signals,providing a new idea for the integrated navigation of projectiles with incomplete information under the condition of satellite signal loss. 展开更多
关键词 GNSS refusal ballistic assistance Guided ammunition Adaptive kalman filter Covariance of innovation sequence
在线阅读 下载PDF
Trajectory prediction algorithm of ballistic missile driven by data and knowledge
6
作者 Hongyan Zang Changsheng Gao +1 位作者 Yudong Hu Wuxing Jing 《Defence Technology(防务技术)》 2025年第6期187-203,共17页
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ... Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase. 展开更多
关键词 ballistic missile Trajectory prediction The boost phase Data and knowledge driven The BP neural network
在线阅读 下载PDF
Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite
7
作者 Yemao He Johnny Qing Zhou +3 位作者 Yanan Jiao Hongshuai Lei Zeang Zhao Daining Fang 《Defence Technology(防务技术)》 2025年第2期1-16,共16页
The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response ... The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy. 展开更多
关键词 UHMWPE composite ballistic response mechanism Theoretical model Performance evaluation
在线阅读 下载PDF
Influence of cryogenic treatment on mechanical and ballistic properties of AA5754 alloy friction stir welded joints
8
作者 V.Manoj Mohan Prasath S.Dharani Kumar Saurabh S.Kumar 《Defence Technology(防务技术)》 2025年第4期184-198,共15页
In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-pierc... In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs). 展开更多
关键词 AA5754 alloy ballistic and mechanical properties Cryogenic treatment Depth of penetration
在线阅读 下载PDF
Ballistic limit velocity of small caliber projectiles against SS400 steel plates:Live fire experiments and empirical models
9
作者 Jong-Hwan Kim Seungwon Baik +1 位作者 Jirui Fu Joon-Hyuk Park 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期22-34,共13页
This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ... This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles. 展开更多
关键词 Live fire ballistic experiment SS400 ballistic limit velocity Small caliber projectile
在线阅读 下载PDF
Machine learning for predicting the outcome of terminal ballistics events 被引量:4
10
作者 Shannon Ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 Machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
在线阅读 下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation 被引量:2
11
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
在线阅读 下载PDF
Ballistic design and testing of a composite armour reinforced by CNTs suitable for armoured vehicles 被引量:1
12
作者 Evangelos Ch.Tsirogiannis Evangelos Daskalakis +2 位作者 Mohamed H.Hassan Abdalla M.Omar Paulo Bartolo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期173-195,共23页
This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate... This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate. 展开更多
关键词 Passive armour protection Protective armour ballistic performance Hybrid composites Vehicle protection
在线阅读 下载PDF
Energy dissipation mechanism and ballistic characteristic optimization in foam sandwich panels against spherical projectile impact 被引量:1
13
作者 Jianqiang Deng Tao Liu +4 位作者 Liming Chen Xin Pan Jingzhe Wang Shaowei Zhu Weiguo Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期108-122,共15页
This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on th... This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application. 展开更多
关键词 Sandwich panel Numerical simulation ballistic resistance Specific penetration energy Energy analysis
在线阅读 下载PDF
Failure pattern in ceramic metallic target under ballistic impact 被引量:1
14
作者 M.A.Iqbal M.K.Khan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期173-190,共18页
The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In ... The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In the experimental investigation,damage induced in the ceramic layer has been quantified in terms of number of cracks developed and failure zone dimensions.The resultant damage in the backing layer has been studied with variation in the bulge and perforation hole in the backing layer with the varying incidence velocity.The discussion of the experimental results has been further followed by three dimensional finite element computations using ABAQUS/Explicit finite code to investigate the behaviour of different types of bi-layer targets under multi-hit projectile impact.The JH-2 constitutive model has been used to reproduce the behaviour of alumina 99.5%and JC constitutive model has been used for steel 4340 and aluminium alloy 1100-H12.The total energy dissipation has been noted to be of lesser magnitude in case of sub-sequential impact in comparison to simultaneous impact of two projectiles.The distance between the impact points of two projectiles also effected the ballistic resistance of bi-layer target.The ballistic resistance of single tile ceramic front layer and four tile ceramic of equivalent area found to be dependent upon the boundary conditions provided to the target. 展开更多
关键词 ballistic resistance Bi-layer target Ceramic metal armour Multi-hit impact Finite element modelling
在线阅读 下载PDF
Modelling of internal ballistics of gun systems:A review 被引量:1
15
作者 F.Ongaro C.Robbe +2 位作者 A.Papy B.Stirbu A.Chabotier 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期35-58,共24页
A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballist... A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it. 展开更多
关键词 Internal ballistics Numerical modelling Lumped-parameter model Computational fluid dynamics Gun systems
在线阅读 下载PDF
A shield of defense:Developing ballistic composite panels with effective electromagnetic interference shielding absorption
16
作者 Nisrin Rizek Abdelal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期123-136,共14页
The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through a... The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through absorption.Six fiber-reinforced epoxy composite panels,each with a different fabric material and stacking sequence,have been fabricated using a hand-layup vacuum bagging process.Two panels made of Kevlar and glass fibers,referred to as(K-NIJ)and(G-NIJ),have been tested according to the National Institute of Justice ballistic resistance protective materials test NIJ 0108.01 Standard-Level IIIA(9 mm×19 mm FMJ 124 g)test.Three panels,namely,a hybrid of Kevlar and glass(H-S),glass with ceramic particles(C-S),and glass with recycled rubber(R-S)have been impacted by the bullet at the center,while the fourth panel made of glass fiber(G-S)has been impacted at the side.EMI shielding properties have been measured in the X-band frequency range via the reflection-transmission method.Results indicate that four panels(K-NIJ,G-NIJ,H-S,and G-S)are capable of withstanding high-velocity impact by stopping the bullet from penetrating through the panels while maintaining their structural integrity.However,under such conditions,these panels may experience localized delamination with variable severity.The EMI measurements reveal that the highest absorptivity observed is 88% for the KNIJ panel at 10.8 GHz,while all panels maintain an average absorptivity above 65%.All panels act as a lossy medium with a peak absorptivity at different frequencies,with K-NIJ and H-S panels demonstrating the highest absorptivity.In summary,the study results in the development of a novel,costeffective,multifunctional glass fiber epoxy composite that combines ballistic and electromagnetic interference shielding properties.The material has been developed using a simple manufacturing method and exhibits remarkable ballistic protection that outperforms Kevlar in terms of shielding efficiency;no bullet penetration or back face signature is observed,and it also demonstrates high EMI shielding absorption.Overall,the materials developed show great promise for various applications,including the military and defense. 展开更多
关键词 ballistic FRP composite EMI shielding ABSORPTIVITY CT-SCAN NIJ test BULLET DEFENSE
在线阅读 下载PDF
Comparison of iron aluminide Fe_(3)Al with armour steel in ballistic behaviour OA
17
作者 Pavel Hanus Milan Pecanac +2 位作者 Mirjana Trivkovic Savo Bojic Sebastian Balos 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期183-190,共8页
Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared t... Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density. 展开更多
关键词 Iron aluminide Armour steel ballistic testing Impact testing Sem microscopy
在线阅读 下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
18
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 Metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing ballistic tests
在线阅读 下载PDF
Protective performance of shear stiffening gel-modified foam against ballistic impact:Experimental and numerical study
19
作者 Huan Tu Haowei Yang +9 位作者 Pengzhao Xu Zhe Yang Fan Tang Cheng Dong Yuchao Chen Lei Ren Wenjian Cao Chenguang Huang Yacong Guo Yanpeng Wei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期510-520,共11页
As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical org... As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam. 展开更多
关键词 ballistic behavior Composite foam Shear stiffening gel Finite element analysis Protective mechanism
在线阅读 下载PDF
Ballistic performance of additive manufacturing 316l stainless steel projectiles based on topology optimization method
20
作者 Hao Xue Tao Wang +2 位作者 Xinyu Cui Yifan Wang Guangyan Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期1-17,共17页
Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology... Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future. 展开更多
关键词 Additive manufacturing Topology optimization ballistic performance Projectile design
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部