期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
烧结温度对BNNTs/B_4C陶瓷复合材料显微结构与力学性能的影响 被引量:6
1
作者 曾小军 刘维良 +1 位作者 冯震乾 阮杰平 《中国陶瓷》 CAS CSCD 北大核心 2014年第8期27-30,共4页
以碳化硼(B4C)粉、硼(B)粉和氮化硼纳米管(BNNTs)为原料,采用热压烧结工艺,制备出高性能BNNTs/B4C陶瓷复合材料。研究了烧结温度对BNNTs/B4C陶瓷复合材料显微结构与力学性能的影响。采用硬度计、万能试验机、X射线衍射仪、扫描电镜等手... 以碳化硼(B4C)粉、硼(B)粉和氮化硼纳米管(BNNTs)为原料,采用热压烧结工艺,制备出高性能BNNTs/B4C陶瓷复合材料。研究了烧结温度对BNNTs/B4C陶瓷复合材料显微结构与力学性能的影响。采用硬度计、万能试验机、X射线衍射仪、扫描电镜等手段对样品性能进行了表征。实验结果表明,在最佳烧结温度2050℃,保温时间30 min,压力30 MPa时,BNNTs/B4C陶瓷复合材料的相对密度达到99.6%,力学性能最佳,维氏硬度、弯曲强度和断裂韧性分别为38.6 GPa、513.19 MPa、6.58 MPa·m1/2。 展开更多
关键词 bNNTs/b4c陶瓷复合材料 烧结温度 显微结构 力学性能
在线阅读 下载PDF
BNNTs/B_4C陶瓷复合材料的显微结构和力学性能研究 被引量:7
2
作者 曾小军 刘维良 +1 位作者 冯震乾 阮杰平 《陶瓷学报》 CAS 北大核心 2013年第4期438-442,共5页
以B4C粉为主要原料,氮化硼纳米管(BNNTs)为补强增韧剂,无定形B粉为烧结助剂,采用热压烧结工艺制备出高性能BNNTs/B4C陶瓷复合材料。研究了BNNTs含量对BNNTs/B4C陶瓷复合材料显微结构和力学性能的影响。采用硬度计、万能试验机、扫描电... 以B4C粉为主要原料,氮化硼纳米管(BNNTs)为补强增韧剂,无定形B粉为烧结助剂,采用热压烧结工艺制备出高性能BNNTs/B4C陶瓷复合材料。研究了BNNTs含量对BNNTs/B4C陶瓷复合材料显微结构和力学性能的影响。采用硬度计、万能试验机、扫描电镜等手段对样品性能进行了表征。实验结果表明,BNNTs含量为1.5wt.%时,BNNTs/B4C陶瓷复合材料力学性能最佳。弯曲强度、断裂韧性和维氏硬度分别为513.19MPa、6.58MPa·m1/2、38.6GPa,比无BNNTs加入的B4C陶瓷分别提高了28.0%、31.5%、14.0%。掺入BNNTs对B4C基体材料产生残余压应力,使复合材料的断裂韧性有所提高。 展开更多
关键词 bNNTS b4c陶瓷复合材料 显微结构 力学性能
在线阅读 下载PDF
制备工艺对B_4C/TiC/Mo陶瓷复合材料力学性能的影响
3
作者 孙军龙 邓建新 刘长霞 《粉末冶金技术》 EI CAS CSCD 北大核心 2006年第6期453-456,共4页
采用热压法制备了10%(质量分数)TiC/4.7%(质量分数)Mo增强B4C基陶瓷,分析了烧结温度、保温时间和烧结压力对力学性能的影响。烧结温度由1 800℃提高到1 900℃时,复合材料的抗弯强度由590MPa提高到705MPa;当烧结温度升至1 950℃,强度反... 采用热压法制备了10%(质量分数)TiC/4.7%(质量分数)Mo增强B4C基陶瓷,分析了烧结温度、保温时间和烧结压力对力学性能的影响。烧结温度由1 800℃提高到1 900℃时,复合材料的抗弯强度由590MPa提高到705MPa;当烧结温度升至1 950℃,强度反而下降;硬度和韧度随烧结温度升高而提高。在烧结温度为1 900℃压力为35MPa保温时间由15min提高到45min时,抗弯强度由600MPa提高到705MPa;进一步增加保温时间,抗弯强度随保温时间的增加而下降;硬度和韧度随保温时间延长而提高。烧结压力对复合材料力学性能的影响较小。当烧结参数为1 900℃、45min、35MPa,B4C/TiC/Mo陶瓷复合材料抗弯强度、硬度、断裂韧度、相对密度分别为705MPa、20.6GPa、3.82MPa.m1/2、98.2%。 展开更多
关键词 b4c陶瓷复合材料 烧结温度 保温时间 烧结压力
在线阅读 下载PDF
B4C陶瓷/UHMWPE复合材料防护性能数值模拟分析 被引量:4
4
作者 肖文莹 崔进 王璐 《兵器材料科学与工程》 CAS CSCD 北大核心 2021年第5期103-110,共8页
为提升复合装甲抗弹性能,用Autodyn软件建立二维模型,通过SPH算法对单一UHMWPE纤维复合材料靶板进行数值模拟,研究其侵彻机理和破坏模式,对B4C陶瓷/UHMWPE复合材料靶板的5种结构进行侵彻性能仿真预测,并验证模拟结果。结果表明:迎弹面... 为提升复合装甲抗弹性能,用Autodyn软件建立二维模型,通过SPH算法对单一UHMWPE纤维复合材料靶板进行数值模拟,研究其侵彻机理和破坏模式,对B4C陶瓷/UHMWPE复合材料靶板的5种结构进行侵彻性能仿真预测,并验证模拟结果。结果表明:迎弹面应选刚度和硬度高的材料,当用B4C陶瓷时,B4C陶瓷与UHMWPE复合材料靶板厚度比为4∶10,抗弹性能最佳。试验结果与模拟结果一致性较好。 展开更多
关键词 b4c陶瓷/UHMWPE复合材料靶板 数值模拟 侵彻机理 SPH算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部