The relationship between mechanical property and microstructure of NiTi shape memory alloy has been studied. It was founded that with increasing prestrain the memory recovery rate decreased, but the recovery stress an...The relationship between mechanical property and microstructure of NiTi shape memory alloy has been studied. It was founded that with increasing prestrain the memory recovery rate decreased, but the recovery stress and the recovery strain increased first and then decreased. The recovery stress and the recovery strain reached maximum at about 11% prestrain. The TEM(Transmission Electron Microscope) results of the alloy indicated that the microstructures with different prestrain of the alloy had obvious characters. At 9% prestrain, the martensite anamorphosis of the alloy still presented self-cooperation configuration, and some martensites have become thick obviously because of tropism. When the prestrain was 11%, the martensite anamorphosis has become completely thick and tropism became consistent. As the prestrain increased to 13%, the microstructures of the alloy have become disordered, the tropism became inconsistent and the interface became blurry.展开更多
近日,清华大学摩擦学国家重点实验室方刚课题组在固态制冷材料的研究取得重要进展。他们提出一种全新策略制备出同时具备高强韧、高稳定性、低能耗及高能效的梯度结构镍钛形状记忆合金制冷材料。相关成果以《局部激光热处理制备梯度结...近日,清华大学摩擦学国家重点实验室方刚课题组在固态制冷材料的研究取得重要进展。他们提出一种全新策略制备出同时具备高强韧、高稳定性、低能耗及高能效的梯度结构镍钛形状记忆合金制冷材料。相关成果以《局部激光热处理制备梯度结构镍钛合金以提高其弹热制冷性能》(Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing)为题,于2021年2月24日在线发表在金属材料领域著名的国际学术期刊《材料学报》(Acta Materialia)上。展开更多
文摘The relationship between mechanical property and microstructure of NiTi shape memory alloy has been studied. It was founded that with increasing prestrain the memory recovery rate decreased, but the recovery stress and the recovery strain increased first and then decreased. The recovery stress and the recovery strain reached maximum at about 11% prestrain. The TEM(Transmission Electron Microscope) results of the alloy indicated that the microstructures with different prestrain of the alloy had obvious characters. At 9% prestrain, the martensite anamorphosis of the alloy still presented self-cooperation configuration, and some martensites have become thick obviously because of tropism. When the prestrain was 11%, the martensite anamorphosis has become completely thick and tropism became consistent. As the prestrain increased to 13%, the microstructures of the alloy have become disordered, the tropism became inconsistent and the interface became blurry.
文摘近日,清华大学摩擦学国家重点实验室方刚课题组在固态制冷材料的研究取得重要进展。他们提出一种全新策略制备出同时具备高强韧、高稳定性、低能耗及高能效的梯度结构镍钛形状记忆合金制冷材料。相关成果以《局部激光热处理制备梯度结构镍钛合金以提高其弹热制冷性能》(Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing)为题,于2021年2月24日在线发表在金属材料领域著名的国际学术期刊《材料学报》(Acta Materialia)上。