A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines...A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.展开更多
A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with redu...A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.展开更多
We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can...We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.展开更多
In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponentia...In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.展开更多
Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation o...Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.展开更多
This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). The...This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.展开更多
This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band an...This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.展开更多
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
基金supported by the National Natural Science Foundation of China(11871312,12131014)the Natural Science Foundation of Shandong Province,China(ZR2023MA086)。
文摘A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.
基金the National Natural Science Foundation of China (No.59975057).
文摘A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10971226,91130013,and 11001270)the National Basic Research Program of China(Grant No.2009CB723802)+1 种基金the Research Innovation Fund of Hunan Province,China (Grant No.CX2011B011)the Innovation Fund of National University of Defense Technology,China(Grant No.B120205)
文摘We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.
基金supported by the Scientific and Technological Research Council of Turkey(Grant No.113F394)
文摘In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
文摘Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.
基金supported by the Natural Science Foundation China(11126343)Guangxi Natural Science Foundation(2013GXNSFBA019010)+1 种基金supported by Natural Science Foundation China(11071152)Natural Science Foundation of Guangdong Province(10151503101000025,S2011010004511)
文摘This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.
基金This work was supported by the National Natural Science Foundation of China(60204001, 60133010)the Scientific Research Fundation of Hunan Provincial Education Department(02C640)the Youth Chengguang Project of Science and Technology of Wuhan City(
文摘This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.