A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The gen...The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
To predict the soil-water characteristic curve(i.e.SWCC)of natural and remoulded Malan loess from soil physical properties,one-point methods for determining the SWCC that are much simpler than experimental methods are...To predict the soil-water characteristic curve(i.e.SWCC)of natural and remoulded Malan loess from soil physical properties,one-point methods for determining the SWCC that are much simpler than experimental methods are proposed.The predicted SWCC is presented in the form of the BRUTSAERT equation,in which the four model parameters can be estimated from soil physical properties using the best correlations obtained in the present study along with one measured data point.The proposed one-point methods are validated using the measured SWCC data reported in the literature.The results of validation studies suggest that the proposed one-point methods can provide reasonable prediction of the SWCC for natural and remoulded Malan loess.The measured data point should be within the transition zone;the measured suction is suggested between25to100kPa for natural loess,while between100to500kPa for remoulded loess.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
文中采用主曲线方法对X80高强管线钢环焊缝在韧脆转变区的断裂韧性分布规律进行了系统研究.根据美国材料试验协会(American Society for Testing and Materials,ASTM)标准ASTM E1921-97《过渡区铁素体钢参考温度T_(0)测定的标准试验方法...文中采用主曲线方法对X80高强管线钢环焊缝在韧脆转变区的断裂韧性分布规律进行了系统研究.根据美国材料试验协会(American Society for Testing and Materials,ASTM)标准ASTM E1921-97《过渡区铁素体钢参考温度T_(0)测定的标准试验方法》,开展不同温度条件下的断裂韧性测试,并通过多温度法计算了参考温度T_(0)及不同失效概率下的断裂韧性预测曲线.此外,结合经验公式将夏比冲击能量转化为对应温度下的断裂韧性,与直接通过断裂韧性试验获得的结果进行了对比分析.为验证方法的有效性,收集了实际管道建设中的198组断裂韧性试验数据,通过单温度法确定了T_(0).结果表明,单温度法确定的T_(0)值与试验结果具有良好的一致性.充分证明了主曲线方法在描述X80管道环焊缝韧脆转变行为中的有效性和适用性,为高强管线钢断裂韧性评估提供了理论依据,同时为工程实践中管道完整性评价提供了可靠的方法支持.展开更多
地下水循环是全球陆地水循环的重要组成部分,精确描述流域地下水径流量对查明流域地下水循环过程至关重要。文章基于水文气象遥感数据,通过构建蒸发、地表径流等记忆曲线模型,结合水量平衡方程,并进行参数不确定性分析,估算了流域降水...地下水循环是全球陆地水循环的重要组成部分,精确描述流域地下水径流量对查明流域地下水循环过程至关重要。文章基于水文气象遥感数据,通过构建蒸发、地表径流等记忆曲线模型,结合水量平衡方程,并进行参数不确定性分析,估算了流域降水释放的地下水径流量。以巴西热基蒂尼奥尼亚河流域(Jequitinhonha river basin)为研究区,结果表明:记忆曲线模型能较好地模拟研究区蒸发、地表径流与陆地水储量变化过程。研究区蒸发模拟值与基于GLEAM的蒸发观测数据拟合较好,识别期与验证期R^(2)分别为0.74与0.81;地表径流模拟值与观测值在识别期R^(2)为0.69,在验证期为0.63;陆地总水储量变化(TWSC)模拟值与GRACE TWSC序列在识别期与验证期的R^(2)分别为0.73与0.6。同时,基于地下水径流记忆曲线模型,估算研究区降水在各月累积释放的地下水径流量在50~350 m^(3)/s之间波动,呈现明显的年内变化规律。研究成果为大尺度、地下水观测数据缺乏的流域地下水径流量估计提供了一种新思路。展开更多
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.
基金Project(2013BAF01B04) supported by the National Key Technology R&D Program during the Twelfth Five-year Plan of ChinaProject(51205425) supported by the National Natural Science Foundation of China
文摘The calculation method of sliding ratios for conjugate-curve gear pair, generated based on the theory of conjugate curves,is proposed. The theoretical model of conjugate-curve gear drive is briefly introduced. The general calculation formulas of sliding ratios are developed according to the conjugate curves. The applications to the circular arc gears based on conjugate curves and the novel involute-helix gears are studied. A comparison on the sliding coefficient with the conventional corresponding gear drive is also carried out. The influences of gear parameters such as spiral parameter, gear ratio and modulus on the sliding ratios of gear drive are discussed. Brief description of manufacturing method for conjugate-curve gear pair is given. The research results show that the sliding ratios of gear pair become smaller with the increase of spiral parameter and gear ratio, respectively. And it will be greater with the increase of modulus for the tooth profiles. The meshing characteristics of conjugate-curve gears are further reflected and the optimization design of tooth profiles with high performance may be obtained.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.
基金Project(41372329) supported by the National Natural Science Foundation of ChinaProject(2014CB744701) supported by the National Basic Research Program of China
文摘To predict the soil-water characteristic curve(i.e.SWCC)of natural and remoulded Malan loess from soil physical properties,one-point methods for determining the SWCC that are much simpler than experimental methods are proposed.The predicted SWCC is presented in the form of the BRUTSAERT equation,in which the four model parameters can be estimated from soil physical properties using the best correlations obtained in the present study along with one measured data point.The proposed one-point methods are validated using the measured SWCC data reported in the literature.The results of validation studies suggest that the proposed one-point methods can provide reasonable prediction of the SWCC for natural and remoulded Malan loess.The measured data point should be within the transition zone;the measured suction is suggested between25to100kPa for natural loess,while between100to500kPa for remoulded loess.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
文摘文中采用主曲线方法对X80高强管线钢环焊缝在韧脆转变区的断裂韧性分布规律进行了系统研究.根据美国材料试验协会(American Society for Testing and Materials,ASTM)标准ASTM E1921-97《过渡区铁素体钢参考温度T_(0)测定的标准试验方法》,开展不同温度条件下的断裂韧性测试,并通过多温度法计算了参考温度T_(0)及不同失效概率下的断裂韧性预测曲线.此外,结合经验公式将夏比冲击能量转化为对应温度下的断裂韧性,与直接通过断裂韧性试验获得的结果进行了对比分析.为验证方法的有效性,收集了实际管道建设中的198组断裂韧性试验数据,通过单温度法确定了T_(0).结果表明,单温度法确定的T_(0)值与试验结果具有良好的一致性.充分证明了主曲线方法在描述X80管道环焊缝韧脆转变行为中的有效性和适用性,为高强管线钢断裂韧性评估提供了理论依据,同时为工程实践中管道完整性评价提供了可靠的方法支持.
文摘地下水循环是全球陆地水循环的重要组成部分,精确描述流域地下水径流量对查明流域地下水循环过程至关重要。文章基于水文气象遥感数据,通过构建蒸发、地表径流等记忆曲线模型,结合水量平衡方程,并进行参数不确定性分析,估算了流域降水释放的地下水径流量。以巴西热基蒂尼奥尼亚河流域(Jequitinhonha river basin)为研究区,结果表明:记忆曲线模型能较好地模拟研究区蒸发、地表径流与陆地水储量变化过程。研究区蒸发模拟值与基于GLEAM的蒸发观测数据拟合较好,识别期与验证期R^(2)分别为0.74与0.81;地表径流模拟值与观测值在识别期R^(2)为0.69,在验证期为0.63;陆地总水储量变化(TWSC)模拟值与GRACE TWSC序列在识别期与验证期的R^(2)分别为0.73与0.6。同时,基于地下水径流记忆曲线模型,估算研究区降水在各月累积释放的地下水径流量在50~350 m^(3)/s之间波动,呈现明显的年内变化规律。研究成果为大尺度、地下水观测数据缺乏的流域地下水径流量估计提供了一种新思路。