A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with redu...A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.展开更多
A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is ...A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.展开更多
Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation o...Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.展开更多
基金the National Natural Science Foundation of China (No.59975057).
文摘A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.
基金Supported by the National Natural Science Foundation of China under Grant No 10374119, and the 0ne-Hundred-Talents Project of Chinese Academy of Science. ACKN0WLEDGMENTS: We gratefully acknowledge Professors Ding Peizhu and Liu Xueshen for their hospitality and help with the symplectic al- gorithm.
文摘A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.
文摘Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.