Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional huma...Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.展开更多
Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaini...Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.展开更多
A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approa...A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.展开更多
To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following...To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following.Based on the conclusion,a new vehicle-road model named "ribbon model" was constructed with consideration of road width and vehicle geometry structure.A new vehicle-road evaluation algorithm was proposed based on this model,and a new path tracking controller including a steering controller and a speed controller was designed.The difficulties of preview distance selection and parameters tuning with speed in the pure following controller are avoided in this controller.To verify the performance of the novel method,simulation and real vehicle experiments were carried out.Experimental results show that the path tracking controller can keep the vehicle in the road running as fast as possible,so it can adjust the control strategy,such as safety,amenity,and rapidity criteria autonomously according to the road situation.This is important for the controller to adapt to different kinds of environments,and can improve the performance of autonomous ground vehicles significantly.展开更多
The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stab...The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.展开更多
As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which prom...As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV's key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.展开更多
This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input satur...This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.展开更多
A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acous...A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.展开更多
The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning...The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning.In this paper,an improved particle swarm optimization(PSO)is proposed to solve three problems,traditional PSO algorithm is prone to fall into local optimization,path smoothing is always carried out after all the path planning steps,and the path fitness function is so simple that it cannot adapt to complex marine environment.The adaptive inertia weight and the“active”particle of the fish swarm algorithm are established to improve the global search and local search ability of the algorithm.The cubic spline interpolation method is combined with PSO to smooth the path in real time.The fitness function of the algorithm is optimized.Five evaluation indexes are comprehensively considered to solve the three-demensional(3D)path planning problem of AUV in the ocean currents and internal wave environment.The proposed method improves the safety of the path planning and saves energy.展开更多
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c...Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.展开更多
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr...Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.展开更多
This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Second...This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Secondly, the geomagnetic navigation model is established by constructing a cost function. Then, by taking into consideration the biological magneto-taxis movement behavior for the geomagnetic environment stimulus, the multiobjective evolutionary search algorithm is derived to describe the search process. Finally, compared to the state-of-the-art, the proposed method presents better robustness. The simulation results demonstrate the reliability and feasibility of the proposed method.展开更多
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele...The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.展开更多
Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intel...Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.展开更多
Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-mo...Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-moving state AUV navigating in head sea at high speed were studied. The mathematical model on longitudinal motion of the high-speed AUV in head sea was established with considering the hydrodynamic lift based on strip theory, which was solved to get the heave and pitch of the AUV by Gaussian elimination method. Based on this, computational fluid dynamics (CFD) method was used to establish the mathematical model of the unsteady viscous flow around the AUV with considering free surface effort by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and volume of fluid (VOF) model. The three-dimensional numerical wave in the computational field was realized through defining the unsteady inlet boundary condition. The motion forms of the AUV navigating in head sea at high speed were carried out by the program source code of user-defined function (UDF) based on dynamic mesh. The hydrodynamic parameters of the AUV such as drag, lift, pitch torque, velocity, pressure and wave profile were got, which reflect well the real ambient flow field of the AUV navigating in head sea at high speed. The computational wave profile agrees well with the experimental phenomenon of a wave-piercing surface vehicle. The force law of the AUV under the impacts of waves was analyzed qualitatively and quantitatively, which provides an effective theoretical guidance and technical support for the dynamics research and shape design of the AUV in real complex environnaent.展开更多
This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater ve...This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified.展开更多
When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruste...When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction.展开更多
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o...At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.展开更多
This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideratio...This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.展开更多
This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagn...This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.展开更多
基金Project(71871013)supported by the National Natural Science Foundation of China。
文摘Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.
文摘Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.
基金Project(90820302) supported by the National Natural Science Foundation of China
文摘A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.
基金Project(90820302)supported by the National Natural Science Foundation of China
文摘To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following.Based on the conclusion,a new vehicle-road model named "ribbon model" was constructed with consideration of road width and vehicle geometry structure.A new vehicle-road evaluation algorithm was proposed based on this model,and a new path tracking controller including a steering controller and a speed controller was designed.The difficulties of preview distance selection and parameters tuning with speed in the pure following controller are avoided in this controller.To verify the performance of the novel method,simulation and real vehicle experiments were carried out.Experimental results show that the path tracking controller can keep the vehicle in the road running as fast as possible,so it can adjust the control strategy,such as safety,amenity,and rapidity criteria autonomously according to the road situation.This is important for the controller to adapt to different kinds of environments,and can improve the performance of autonomous ground vehicles significantly.
基金Project(61174047) supported by the National Natural Science Foundation of ChinaProject(20102304110003) supported by the Doctoral Fund of Ministry of Education of ChinaProject(51316080301) supported by Advanced Research
文摘The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.
基金Project(ZR2014EEP019) supported by the Natural Science Foundation of Shandong Province,ChinaProject(51505491) supported by the National Natural Science Foundation of China
文摘As the mission needs of the autonomous underwater vehicles(AUV) have become increasingly varied and complex,the AUVs are developing in the direction of systematism, multifunction, and clustering technology, which promotes the progress of key technologies and proposes a series of technical problems. Therefore, it is necessary to make systemic analysis and in-depth study for the progress of AUV's key technologies and innovative applications. The multi-functional mission needs and its key technologies involved in complex sea conditions are pointed out through analyzing the domestic and foreign technical programs, functional characteristics and future development plans. Furthermore, the overall design of a multi-moving state AUV is proposed. Then, technical innovations of the key technologies, such as thrust vector, propeller design, kinematics and dynamics, navigation control, and ambient flow field characteristics, are made, combining with the structural characteristics and motion characteristics of the new multi-moving state AUV. The results verify the good performance of the multi-moving state AUV and provide a theoretical guidance and technical support for the design of new AUV in real complex sea conditions.
基金Project(51979116)supported by the National Natural Science Foundation of ChinaProject(2018KFYYXJJ012,2018JYCXJJ045)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(YT19201702)supported by the Innovation Foundation of Maritime Defense Technologies Innovation Center,ChinaProject supported by the HUST Interdisciplinary Innovation Team Project,China。
文摘This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.
基金Sponsored by National Natural Foundation (50979093)the High Technology Research and Development Program of China (863 Program)( 2007AA809502C)Program for New Century Excellent Talents in University (NCET-06-0877)
文摘A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.
基金supported by the High-tech Ship Projects of the Ministry of Industry and Information Technology of China(2021-342).
文摘The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning.In this paper,an improved particle swarm optimization(PSO)is proposed to solve three problems,traditional PSO algorithm is prone to fall into local optimization,path smoothing is always carried out after all the path planning steps,and the path fitness function is so simple that it cannot adapt to complex marine environment.The adaptive inertia weight and the“active”particle of the fish swarm algorithm are established to improve the global search and local search ability of the algorithm.The cubic spline interpolation method is combined with PSO to smooth the path in real time.The fitness function of the algorithm is optimized.Five evaluation indexes are comprehensively considered to solve the three-demensional(3D)path planning problem of AUV in the ocean currents and internal wave environment.The proposed method improves the safety of the path planning and saves energy.
基金Project(2006AA09Z235) supported by the National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduates,China
文摘Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.
基金Project(2012T50331)supported by China Postdoctoral Science FoundationProject(2008AA092301-2)supported by the High-Tech Research and Development Program of China
文摘Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.
基金supported by the National Natural Science Foundation of China(5137917651179156)
文摘This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Secondly, the geomagnetic navigation model is established by constructing a cost function. Then, by taking into consideration the biological magneto-taxis movement behavior for the geomagnetic environment stimulus, the multiobjective evolutionary search algorithm is derived to describe the search process. Finally, compared to the state-of-the-art, the proposed method presents better robustness. The simulation results demonstrate the reliability and feasibility of the proposed method.
基金Project(2006AA09Z235) supported by National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.
文摘Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.
基金Project(2006AA09Z235)supported by the National High Technology Research and Development Program of ChinaProject(CX2009B003)supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-moving state AUV navigating in head sea at high speed were studied. The mathematical model on longitudinal motion of the high-speed AUV in head sea was established with considering the hydrodynamic lift based on strip theory, which was solved to get the heave and pitch of the AUV by Gaussian elimination method. Based on this, computational fluid dynamics (CFD) method was used to establish the mathematical model of the unsteady viscous flow around the AUV with considering free surface effort by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and volume of fluid (VOF) model. The three-dimensional numerical wave in the computational field was realized through defining the unsteady inlet boundary condition. The motion forms of the AUV navigating in head sea at high speed were carried out by the program source code of user-defined function (UDF) based on dynamic mesh. The hydrodynamic parameters of the AUV such as drag, lift, pitch torque, velocity, pressure and wave profile were got, which reflect well the real ambient flow field of the AUV navigating in head sea at high speed. The computational wave profile agrees well with the experimental phenomenon of a wave-piercing surface vehicle. The force law of the AUV under the impacts of waves was analyzed qualitatively and quantitatively, which provides an effective theoretical guidance and technical support for the dynamics research and shape design of the AUV in real complex environnaent.
基金supported by the National Natural Science Foundation of China (6197317561973172)Tianjin Natural Science Foundation (19JCZDJC32800)。
文摘This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified.
基金Project(51279040)supported by the National Natural Science Foundation of China
文摘When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle(AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction.
基金supported by the National Science Fund of China under Grants 61603034China Postdoctoral Science Foundation under Grant 2019M653870XB+1 种基金Beijing Municipal Natural Science Foundation (3182027)Fundamental Research Funds for the Central Universities,China,FRF-GF-17-B44,and XJS191315
文摘At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProjects(51179035,51779057)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.
基金supported by the National Natural Science Foundation of China(1140503561004130+4 种基金60834005)the Natural Science Foundation of Heilongjiang Province of China(F201414)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBHQ15034)the Stable Supporting Fund of Acoustic Science and Technology Laboratory(JCKYS2019604SSJS002)the Fundamental Research Funds for the Central Universities。
文摘This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.