In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line...In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.展开更多
With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway ...With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.展开更多
中压设备是列车上较大功率的设备,这些设备分散在列车各系统中,由辅助供电系统集中为其供电。由于电感效应,中压设备启动时的峰值电流会对辅助供电系统的安全性和稳定性产生不利影响。为保证列车辅助供电系统稳定、可靠运行,需要有效地...中压设备是列车上较大功率的设备,这些设备分散在列车各系统中,由辅助供电系统集中为其供电。由于电感效应,中压设备启动时的峰值电流会对辅助供电系统的安全性和稳定性产生不利影响。为保证列车辅助供电系统稳定、可靠运行,需要有效地控制中压设备启动时的峰值电流。基于列车控制与管理系统(TCMS,Train Control and Management System)的控制逻辑,研究列车上电自检阶段中压设备错时顺序启动控制方法,列车运行中空调压缩机错时启动控制方法,以及辅助供电系统故障工况下中压设备减载启动控制方法,避免中压负载峰值电流叠加对辅助供电系统造成的不良影响,确保在故障情况下有足够的辅助供电能力。通过实验室仿真测试和运营线上实车试验,初步验证了在辅助供电备用率和启动峰值电流的限制约束下,列车中压设备启动控制方法的有效性。展开更多
基金supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant No. 71131001-1)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001)
文摘In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.
文摘With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.
文摘中压设备是列车上较大功率的设备,这些设备分散在列车各系统中,由辅助供电系统集中为其供电。由于电感效应,中压设备启动时的峰值电流会对辅助供电系统的安全性和稳定性产生不利影响。为保证列车辅助供电系统稳定、可靠运行,需要有效地控制中压设备启动时的峰值电流。基于列车控制与管理系统(TCMS,Train Control and Management System)的控制逻辑,研究列车上电自检阶段中压设备错时顺序启动控制方法,列车运行中空调压缩机错时启动控制方法,以及辅助供电系统故障工况下中压设备减载启动控制方法,避免中压负载峰值电流叠加对辅助供电系统造成的不良影响,确保在故障情况下有足够的辅助供电能力。通过实验室仿真测试和运营线上实车试验,初步验证了在辅助供电备用率和启动峰值电流的限制约束下,列车中压设备启动控制方法的有效性。