At present,after the actual inspection of the rail transit automatic ticket checking system,some security vulnerabilities have appeared,and there are also some defects in information security.For example,the database ...At present,after the actual inspection of the rail transit automatic ticket checking system,some security vulnerabilities have appeared,and there are also some defects in information security.For example,the database and virus protection need to be analyzed and upgraded in order to cope with the increasing number of information security risks.This article analyzes the security problems in the AFC system,and puts forward related suggestions and solutions,hoping to provide some reference for technical developers.展开更多
与传统列控系统相比,全自动无人驾驶运营场景更加复杂多变,潜在的危险及致因具有更强的隐蔽性和复杂性,给运营安全带来了新的挑战。针对以上问题,提出一种STAMP(Systems-Theoretic Accident Model and Process)与模型检验相结合的复杂...与传统列控系统相比,全自动无人驾驶运营场景更加复杂多变,潜在的危险及致因具有更强的隐蔽性和复杂性,给运营安全带来了新的挑战。针对以上问题,提出一种STAMP(Systems-Theoretic Accident Model and Process)与模型检验相结合的复杂运营场景安全验证方法。首先,基于STAMP理论构建运营场景分层控制结构模型,辨识潜在的不安全控制行为、分析危险致因和安全约束;其次,定义分层控制结构模型与安全状态机模型间的基本转换规则,基于分层控制结构模型、安全约束和转换规则,构建运营场景安全状态机模型;最后,针对提取的安全约束,利用数据流图建立安全属性验证模型,结合模型检验技术,对运营场景安全状态机模型进行形式化验证。以全自动无人驾驶运营场景中列车自动进站停车为例,对方法进行验证分析。结果表明,当STAMP理论提取的安全约束通过了场景安全状态机模型的验证时,表示在该场景中对应的不安全控制行为没有发生且不导致相应危险。该方法结合系统安全分析与形式化建模验证的优势,降低了运营场景建模的难度,构建的运营场景形式化模型满足系统安全约束,可以作为全自动无人驾驶系统安全设计和安全改进的重要基础。展开更多
基金2017 Sichuan Provincial China Key Project“Big Data Analysis and Operation Management Safety Research Based on Smart Rail Transit”(No.17ZA0235)。
文摘At present,after the actual inspection of the rail transit automatic ticket checking system,some security vulnerabilities have appeared,and there are also some defects in information security.For example,the database and virus protection need to be analyzed and upgraded in order to cope with the increasing number of information security risks.This article analyzes the security problems in the AFC system,and puts forward related suggestions and solutions,hoping to provide some reference for technical developers.
文摘与传统列控系统相比,全自动无人驾驶运营场景更加复杂多变,潜在的危险及致因具有更强的隐蔽性和复杂性,给运营安全带来了新的挑战。针对以上问题,提出一种STAMP(Systems-Theoretic Accident Model and Process)与模型检验相结合的复杂运营场景安全验证方法。首先,基于STAMP理论构建运营场景分层控制结构模型,辨识潜在的不安全控制行为、分析危险致因和安全约束;其次,定义分层控制结构模型与安全状态机模型间的基本转换规则,基于分层控制结构模型、安全约束和转换规则,构建运营场景安全状态机模型;最后,针对提取的安全约束,利用数据流图建立安全属性验证模型,结合模型检验技术,对运营场景安全状态机模型进行形式化验证。以全自动无人驾驶运营场景中列车自动进站停车为例,对方法进行验证分析。结果表明,当STAMP理论提取的安全约束通过了场景安全状态机模型的验证时,表示在该场景中对应的不安全控制行为没有发生且不导致相应危险。该方法结合系统安全分析与形式化建模验证的优势,降低了运营场景建模的难度,构建的运营场景形式化模型满足系统安全约束,可以作为全自动无人驾驶系统安全设计和安全改进的重要基础。