在实际监测任务中,及时有效地识别飞行模式至关重要。然而,现有的飞行模式识别方法主观性强、模式单一,限制了在复杂情况下的飞行监控能力,在实际应用中有局限性,进而导致模式边界定位不精确、识别精度低。为此提出一种基于敏感边界和...在实际监测任务中,及时有效地识别飞行模式至关重要。然而,现有的飞行模式识别方法主观性强、模式单一,限制了在复杂情况下的飞行监控能力,在实际应用中有局限性,进而导致模式边界定位不精确、识别精度低。为此提出一种基于敏感边界和长飞行序列的飞行模式智能识别方法(Intelligent Flight Pattern Recognition Method for Sensitive Boundaries and Long Flight Sequences, IFPRM-SBLFS),以对飞行模式进行智能识别。为了更好地探索多模式飞行参数的空间关系,设计自适应图嵌入,针对不同持续时间的飞行模式提出去噪深度多尺度自动编码器,以及用于减轻模型损失的分类加权焦点损失和回归联合时空交集损失。为验证所提方法的优越性,采集多架民用航班的真实参数,涵盖11种飞行模式,通过人工标注构建飞行模式数据集。仿真计算结果表明:新模型能够在连续飞行架次中自动区分不同的飞行模式,并准确提取模式边界,识别准确率达到了99.07%,且无需任何预处理或后处理;新的智能识别方法可以有效提高精确度和敏感边界的飞行模式识别效果。展开更多
文摘在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。
文摘在实际监测任务中,及时有效地识别飞行模式至关重要。然而,现有的飞行模式识别方法主观性强、模式单一,限制了在复杂情况下的飞行监控能力,在实际应用中有局限性,进而导致模式边界定位不精确、识别精度低。为此提出一种基于敏感边界和长飞行序列的飞行模式智能识别方法(Intelligent Flight Pattern Recognition Method for Sensitive Boundaries and Long Flight Sequences, IFPRM-SBLFS),以对飞行模式进行智能识别。为了更好地探索多模式飞行参数的空间关系,设计自适应图嵌入,针对不同持续时间的飞行模式提出去噪深度多尺度自动编码器,以及用于减轻模型损失的分类加权焦点损失和回归联合时空交集损失。为验证所提方法的优越性,采集多架民用航班的真实参数,涵盖11种飞行模式,通过人工标注构建飞行模式数据集。仿真计算结果表明:新模型能够在连续飞行架次中自动区分不同的飞行模式,并准确提取模式边界,识别准确率达到了99.07%,且无需任何预处理或后处理;新的智能识别方法可以有效提高精确度和敏感边界的飞行模式识别效果。