Let C be a closed bounded convex subset of a uniformaly convex Banach space X with a Frechet differentiable norm, F= {T(t):t ≥0} an asymptotically noncxpansivc semigroup on C, and u:[0,∞)→ C an almost-orbit of F. T...Let C be a closed bounded convex subset of a uniformaly convex Banach space X with a Frechet differentiable norm, F= {T(t):t ≥0} an asymptotically noncxpansivc semigroup on C, and u:[0,∞)→ C an almost-orbit of F. Then we show that {u(t):t ≥ 0} is almost convergent weakly to a common fixed point y of F, that isweak - lim1/tdr - y uniformly in s≥ 0.This implies that {u(t):t≥ 0} converges weakly to y if and onlyif u is weakly asymptotically regular, i.e lim (u(t + s) - u(t) = 0 weakly for all s≥ 0.展开更多
Asymptotical stability is an important property of the associative memory neural networks.In this comment,we demonstrate that the asymptotical stability analyses of the MVECAM and MV-eBAM in the asynchronous update ...Asymptotical stability is an important property of the associative memory neural networks.In this comment,we demonstrate that the asymptotical stability analyses of the MVECAM and MV-eBAM in the asynchronous update mode by Wang et al are not rigorous,and then we modify the errors and further prove that the two models are all asymptotically stable in both synchronous and asynchronous update modes.展开更多
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n...A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.展开更多
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg...This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.展开更多
The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co...The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.展开更多
Considering the stochastic delay problems existing in networked control systems, a new control mode is proposed for networked control systems whose delay is longer than a sampling period. Under the control mode, the m...Considering the stochastic delay problems existing in networked control systems, a new control mode is proposed for networked control systems whose delay is longer than a sampling period. Under the control mode, the mathematical model of such a system is established. A stochastic stabilization condition for the system is given. The maximum delay can be derived from the stabilization condition.展开更多
Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field ...Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field of application of this technique. This method is used to design a stabilizer for the inertia wheel pendulum system. Moreover, it is shown that the control Lyapunov function which is obtained from this method can also be used to design a globally asymptotically stabilizing controller with optimality.展开更多
Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for dela...Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.展开更多
In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fi...In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.展开更多
The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility...The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio...This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparis...The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
In this paper, the problem of locally optimum detection of weak pulse signals in narrow-band non-Gaussian noise is discussed. A generalized model is proposed for locally optimum detectors (LOD) and the corresponding p...In this paper, the problem of locally optimum detection of weak pulse signals in narrow-band non-Gaussian noise is discussed. A generalized model is proposed for locally optimum detectors (LOD) and the corresponding physical meaning is explained. On the basis of this generalized model, the LOD structures are derived for detecting both coherent- and incoherent-pulse signals in narrow-band non-Gaussian noise. The asymptotic relative efficiency (ARE) due to Pitman is used to evaluate the performance of these LODs. Finally, numerical calculations are carried out for the AREs of these LODs and some valuable results are obtained.展开更多
The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are...The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.展开更多
The restriction of KB averaging method is discussed and asymptotic solution of the weakly nonlinear and forced oscillation u″+ω20u=εkcos ωt-εu3 is obtained by Struble technique. The conclusion about this oscillat...The restriction of KB averaging method is discussed and asymptotic solution of the weakly nonlinear and forced oscillation u″+ω20u=εkcos ωt-εu3 is obtained by Struble technique. The conclusion about this oscillation derived with other method is discussed. The results show that KB method will break down when a and θ in the zeroth solution of above eqation are not slowly varying functions of time t. The stationary solution of weakly nonlinear oscillation, u″+ω20u=εkcosω(ε)t-εu3 is also analysed.展开更多
In the present paper,the nonautonomous two-species Predator-Prey models with diffusion are considered. Prey species can diffuse between two patches, while the predator species is confined to one patch and cannot diffu...In the present paper,the nonautonomous two-species Predator-Prey models with diffusion are considered. Prey species can diffuse between two patches, while the predator species is confined to one patch and cannot diffuse. It is proved that if the coefficients satisfy certain inequalities,then the system can be made persistent and have a strictly positive periodic orbit which is glotally asymptotically stable.展开更多
This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a ...This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.展开更多
文摘Let C be a closed bounded convex subset of a uniformaly convex Banach space X with a Frechet differentiable norm, F= {T(t):t ≥0} an asymptotically noncxpansivc semigroup on C, and u:[0,∞)→ C an almost-orbit of F. Then we show that {u(t):t ≥ 0} is almost convergent weakly to a common fixed point y of F, that isweak - lim1/tdr - y uniformly in s≥ 0.This implies that {u(t):t≥ 0} converges weakly to y if and onlyif u is weakly asymptotically regular, i.e lim (u(t + s) - u(t) = 0 weakly for all s≥ 0.
基金The project is supported by the National Natural Science Foundation of China (60873231 and 60973046)Major State Basic Research Development Pro-gram of China (2011CB302903)+2 种基金Natural Science Foundation of Jiangsu Province(BK2009426)Research and Innovation Plan for College Graduates of Jiangsu Province(CX10B_195Z) the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(NY210043)
文摘Asymptotical stability is an important property of the associative memory neural networks.In this comment,we demonstrate that the asymptotical stability analyses of the MVECAM and MV-eBAM in the asynchronous update mode by Wang et al are not rigorous,and then we modify the errors and further prove that the two models are all asymptotically stable in both synchronous and asynchronous update modes.
基金Project(24A0006)supported by the Key Project of Scientific Research Fund of Hunan Provincial Department of Education,ChinaProject(2024JJ5430)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2024JK2045,2023RC3061)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB2011300the National Natural Science Foundation of China under Grant 52075262。
文摘This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.
基金Supported by the National Natural Science Foundation of China(12101004)the Natural Science Research Project of Anhui Educational Committee(2023AH030021)the Research Startup Foundation for Introducing Talent of Anhui Polytechnic University(2020YQQ064)。
文摘The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.
基金This project was supported by the National Natural Science Foundation of China (60274014, 60574088).
文摘Considering the stochastic delay problems existing in networked control systems, a new control mode is proposed for networked control systems whose delay is longer than a sampling period. Under the control mode, the mathematical model of such a system is established. A stochastic stabilization condition for the system is given. The maximum delay can be derived from the stabilization condition.
文摘Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems. However, this method still has some limitation. An improved design method is proposed to extend the field of application of this technique. This method is used to design a stabilizer for the inertia wheel pendulum system. Moreover, it is shown that the control Lyapunov function which is obtained from this method can also be used to design a globally asymptotically stabilizing controller with optimality.
基金the National Natural Science Foundation of China (60574011)the National Natural Science Foundation of Liaoning Province (2050770).
文摘Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.
基金supported by the National Natural Science Foundation of China(1150143371473187)the Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ1014)
文摘In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods.
基金supported by the National Natural Science Foundation of China (11171221)Shanghai Municipal Committee of Science and Technology (10550500800)+1 种基金Basic and Frontier Research Program of Science and Technology Department of Henan Province (112300410277,082300440150)China Coal Industry Association Scientific and Technical Guidance to Project (MTKJ-2011-403)
文摘The purpose of this paper is to apply inertial technique to string averaging projection method and block-iterative projection method in order to get two accelerated projection algorithms for solving convex feasibility problem.Compared with the existing accelerated methods for solving the problem,the inertial technique employs a parameter sequence and two previous iterations to get the next iteration and hence improves the flexibility of the algorithm.Theoretical asymptotic convergence results are presented under some suitable conditions.Numerical simulations illustrate that the new methods have better convergence than the general projection methods.The presented algorithms are inspired by the inertial proximal point algorithm for finding zeros of a maximal monotone operator.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
文摘The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
文摘In this paper, the problem of locally optimum detection of weak pulse signals in narrow-band non-Gaussian noise is discussed. A generalized model is proposed for locally optimum detectors (LOD) and the corresponding physical meaning is explained. On the basis of this generalized model, the LOD structures are derived for detecting both coherent- and incoherent-pulse signals in narrow-band non-Gaussian noise. The asymptotic relative efficiency (ARE) due to Pitman is used to evaluate the performance of these LODs. Finally, numerical calculations are carried out for the AREs of these LODs and some valuable results are obtained.
文摘The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.
文摘The restriction of KB averaging method is discussed and asymptotic solution of the weakly nonlinear and forced oscillation u″+ω20u=εkcos ωt-εu3 is obtained by Struble technique. The conclusion about this oscillation derived with other method is discussed. The results show that KB method will break down when a and θ in the zeroth solution of above eqation are not slowly varying functions of time t. The stationary solution of weakly nonlinear oscillation, u″+ω20u=εkcosω(ε)t-εu3 is also analysed.
文摘In the present paper,the nonautonomous two-species Predator-Prey models with diffusion are considered. Prey species can diffuse between two patches, while the predator species is confined to one patch and cannot diffuse. It is proved that if the coefficients satisfy certain inequalities,then the system can be made persistent and have a strictly positive periodic orbit which is glotally asymptotically stable.
基金supported by the National Natural Science Foundation of China (60774011)the Natural Science Foundation of Fujian Province (2008J0026)
文摘This article deals with the uniformly globally asymptotic controllability of discrete nonlinear systems with disturbances.It is shown that the system is uniformly globally asymptotic controllability with respect to a closed set if and only if there exists a smooth control Lyapunov function.Further, it is obtained that the control Lyapunov function may be used to construct a feedback law to stabilize the closed-loop system.In addition, it is proved that for periodic discrete systems, the resulted control Lyapunov functions are also time periodic.