Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言...深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。展开更多
传统时序预测模型通常仅关注捕捉复杂时序中的趋势和模式,而忽略了变量间的相互作用,限制了该模型在复杂时序预测中应用.提出一种Dualformer双模型并联方案,该模型并联iTransformer(inverted transformer)和PatchTST(patch time series ...传统时序预测模型通常仅关注捕捉复杂时序中的趋势和模式,而忽略了变量间的相互作用,限制了该模型在复杂时序预测中应用.提出一种Dualformer双模型并联方案,该模型并联iTransformer(inverted transformer)和PatchTST(patch time series transformer),通过激活函数替代前馈神经网络,并通过多层感知机计算输出结果.Dualformer利用注意力机制同时捕捉复杂时序中的时间维度和变量维度信息,关注时间趋势与多变量交互.实验结果显示,Dualformer在复杂时序预测效果上显著优于对比模型iTransformer、PatchTST和DLinear(decomposition linear),在实际应用中可显著提高复杂时序预测的准确度,具有广泛应用前景.展开更多
中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在...中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在关系与全局对应(legal potential relationship and global correspondence,LPRGC)模型理解法律文本中术语、规则和上下文信息的能力,从而提高了实体和关系的识别准确性,进而提升了实体和关系抽取算法的性能.为解决重叠实体问题,设计了一种基于潜在关系和实体对齐的关系抽取方法.通过精确标注实体位置,筛选潜在关系,并利用全局矩阵对齐实体,解决重叠实体的关系抽取问题,能够更准确地捕捉到重叠实体之间的关系,并有效地将其映射到正确的实体对上,从而提高抽取结果的准确性.在中国法律智能技术评测数据集上进行实体和关系抽取实验,结果表明,LPRGC模型的准确率、召回率和F_(1)值分别为85.21%、81.19%和83.15%,均优于对比模型,特别是在处理实体重叠问题时,LPRGC模型在单实体重叠类型的抽取中,F_(1)值达到了81.45%;在多实体重叠类型的抽取中,F_(1)值达80.67%.LPRGC模型在实体和关系抽取的准确性上较现有方法有明显改进,在处理复杂法律文本中的实体重叠问题上取得了显著效果.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
文摘深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。
文摘传统时序预测模型通常仅关注捕捉复杂时序中的趋势和模式,而忽略了变量间的相互作用,限制了该模型在复杂时序预测中应用.提出一种Dualformer双模型并联方案,该模型并联iTransformer(inverted transformer)和PatchTST(patch time series transformer),通过激活函数替代前馈神经网络,并通过多层感知机计算输出结果.Dualformer利用注意力机制同时捕捉复杂时序中的时间维度和变量维度信息,关注时间趋势与多变量交互.实验结果显示,Dualformer在复杂时序预测效果上显著优于对比模型iTransformer、PatchTST和DLinear(decomposition linear),在实际应用中可显著提高复杂时序预测的准确度,具有广泛应用前景.
文摘中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在关系与全局对应(legal potential relationship and global correspondence,LPRGC)模型理解法律文本中术语、规则和上下文信息的能力,从而提高了实体和关系的识别准确性,进而提升了实体和关系抽取算法的性能.为解决重叠实体问题,设计了一种基于潜在关系和实体对齐的关系抽取方法.通过精确标注实体位置,筛选潜在关系,并利用全局矩阵对齐实体,解决重叠实体的关系抽取问题,能够更准确地捕捉到重叠实体之间的关系,并有效地将其映射到正确的实体对上,从而提高抽取结果的准确性.在中国法律智能技术评测数据集上进行实体和关系抽取实验,结果表明,LPRGC模型的准确率、召回率和F_(1)值分别为85.21%、81.19%和83.15%,均优于对比模型,特别是在处理实体重叠问题时,LPRGC模型在单实体重叠类型的抽取中,F_(1)值达到了81.45%;在多实体重叠类型的抽取中,F_(1)值达80.67%.LPRGC模型在实体和关系抽取的准确性上较现有方法有明显改进,在处理复杂法律文本中的实体重叠问题上取得了显著效果.