Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing copri...Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing coprime array,we propose a high-order extended coprime array(HoECA)for improved direction of arrival(DOA)estimation.We first derive the closed-form expressions for the range of consecutive lags.Then,by changing the inter-element spacing of a uniform linear array(ULA),three cases are proposed and discussed.It is indicated that the HoECA can obtain the largest number of consecutive lags when the spacing takes the maximum value.Finally,by comparing it with the other sparse arrays,the optimized HoECA enjoys a larger number of consecutive lags with mitigating mutual coupling.Simulation results are shown to evaluate the superiority of HoECA over the others in terms of DOF,mutual coupling leakage and estimation accuracy.展开更多
To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was...To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was divided into three parts: running time, dwell time and intersection delay time, and the data were divided into three categories of historical data, static data and real-time data. The bus arrival time was obtained by fusion computing the real-time data in perception layer together with historical data and static data in collaborative layer. The validity of the collaborative model was verified by the data of a typical urban bus line in Shanghai, and 1538 sets of data were collected and analyzed from three different perspectives. By comparing the experimental results with the actual results, it is shown that the experimental results are with higher prediction accuracy, and the collaborative prediction model adopted is able to meet the demand for bus arrival prediction.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
When the information of mutual coupling and shadowing effect of a conformal antenna array are unknown, the performance of direction of arrival (DOA) estimation will be seriously degraded by using some classical meth...When the information of mutual coupling and shadowing effect of a conformal antenna array are unknown, the performance of direction of arrival (DOA) estimation will be seriously degraded by using some classical methods, such as the multiple signal classification (MUSIC) algorithm. Meanwhile it is difficult to measure or estimate the shadowing effect. The DOA estimation for a conformal uniform circular array (UCA) is studied. Firstly, the azimuthal angle is separated from all the unknown information by transforming the UCA from the element space to the mode space. Then the rank reduction (RARE) algorithm is applied in the estima- tion of the azimuthal angle. The π ambiguity existed in the RARE is solved by the beam forming. The main advantage of this method is that it does not need to measure the mutual coupling and the shadowing effect. Compared with the subarray method, it will not decrease the aperture of the array. Simulation results validate the advantages of the method.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
The delay vehicles experience at signalized intersections is one of the most important indicators for measuring intersection performance. The interpretation of delay variability evolvement at intersections gives a com...The delay vehicles experience at signalized intersections is one of the most important indicators for measuring intersection performance. The interpretation of delay variability evolvement at intersections gives a comprehensive insight into arterial traffic operation. Thus, an analytical model is proposed to investigate delay variability at coordinated intersections. Two different flow rates are assumed for both effective red and green periods in cumulative curves, through which the effect of signal coordination is incorporated in delay estimation. Then, an analogy of Markov chain process is used to explore the mechanism of stochastic overflow queue at signalized intersections. Numerical case studies show that with the decrease of arrival proportions during green, the shape of delay distribution in both undersaturation and oversaturation cases shifts faster towards higher values, implying that the coordination effect between paired intersections has a great effect on the delay distribution. As for delay fluctuation range, favorable coordination is demonstrated to be able to weaken the variability of delay estimates especially for undersaturation conditions.展开更多
针对低空经济发展涉及的安全管理问题,在总结低空经济相关技术路线原理及落地方案的运行经验,分析低空安防普适性的4个建设方案:雷达与通感一体技术融合方案、广播式自动相关监视技术方案、远程识别技术方案和基于TDOA(time difference ...针对低空经济发展涉及的安全管理问题,在总结低空经济相关技术路线原理及落地方案的运行经验,分析低空安防普适性的4个建设方案:雷达与通感一体技术融合方案、广播式自动相关监视技术方案、远程识别技术方案和基于TDOA(time difference of arrival)无线电技术的多源融合方案的基础上,构建无人飞行器探测技术评价指标体系,并建立了一种基于决策试验评估实验室(decision-making trial and evaluation laboratory, DEMATEL)和优劣解距离法(technique for order preference by similarity to an ideal solution, TOPSIS)的多属性评价方法。结果发现,以TDOA为基础的多源融合方案是构建城市低空安防体系的有效路径和普适性方案。研究表明,低空安防体系的建设是一个系统性工程,需要政府、企业和社会各方的共同努力,在技术、数据、运营等多个层面进行整合,以适应未来低空经济的发展需求。展开更多
To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a de...To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a deep unfolded amplitude-phase error self-calibration network.Firstly,a sparse-based DOA model with an array convex error restriction is established,which gets resolved via an alternating iterative minimization(AIM)algo-rithm.The algorithm is then unrolled to a deep network known as AE-AIM Network(AE-AIM-Net),where all parameters are opti-mized through multi-task learning using the constructed com-plete dataset.The results of the simulation and theoretical analy-sis suggest that the proposed unfolded network achieves lower computational costs compared to typical sparse recovery meth-ods.Furthermore,it maintains excellent estimation performance even in the presence of array magnitude-phase errors.展开更多
Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as...Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.展开更多
To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the ste...To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.展开更多
Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) u...Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.展开更多
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc...With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.展开更多
Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms...Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.展开更多
深入研究了UWB(ultra wideband)无线传感器网络中基于匹配滤波门限检测的TOA(time of arrival)估计算法.针对现有算法的不足,提出了一种三步TOA估计算法:先确定DP(direct path)搜索区域,然后使用门限检测确定DP的粗略位置,最后精确搜索...深入研究了UWB(ultra wideband)无线传感器网络中基于匹配滤波门限检测的TOA(time of arrival)估计算法.针对现有算法的不足,提出了一种三步TOA估计算法:先确定DP(direct path)搜索区域,然后使用门限检测确定DP的粗略位置,最后精确搜索到DP的中心.其中,用于计算检测门限的门限因子依据匹配滤波输出的峭度动态设置,设置模型独立于信道模式,其正确性通过与使用固定门限因子所获得的性能对比进行了验证.与其他算法的性能对比仿真结果表明,所提出的三步TOA估计算法在运算效率和TOA估计精度上取得了较好折衷,适合于当前实际应用.还通过对TOA估计误差的统计分析讨论了测距结果的可信度:依据峭度将测距结果划分为可信和不可信两个级别,并为各级别的TOA估计误差分别了建立概率密度模型.在定位模块中有效利用这些可信度信息,可进一步提高定位精度.展开更多
为了设计一种以较小运算量获得较高测距精度的TOA(time of arrival)估计算法以适合节点运算能力有限的UWB(ultra wideband)无线传感器网络,提出了一种结合能量检测与匹配滤波的两步TOA估计方法.分析了该方法的工作原理,指出了第1步中DP(...为了设计一种以较小运算量获得较高测距精度的TOA(time of arrival)估计算法以适合节点运算能力有限的UWB(ultra wideband)无线传感器网络,提出了一种结合能量检测与匹配滤波的两步TOA估计方法.分析了该方法的工作原理,指出了第1步中DP(direct path)块检测成功率及第2步中匹配滤波门限因子设置的重要性.通过仿真对影响DP块检测成功率的两个因素,即DP块检测算法的选用和能量积分周期的设置进行了讨论.提出了依据能量采样序列中DP块与最小块比值DMR(DP to minimum energy sample ratio)动态设置匹配滤波门限因子的思想,并为其建立了数学模型.仿真结果表明,两步TOA估计方法在运算量比单一的基于匹配滤波的相干算法小很多的情况下,获得了比单一的基于能量检测的非相干方法更好的TOA估计性能,从而更适合应用于有低复杂度、低能耗设计需求的传感器节点中.展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(62071476,62022091,61801488,61921001)the China Postdoctoral Science Foundation(2021T140788,2020M683728)+1 种基金the Science and Technology Innovation Program of Hunan Province(2020RC2041)the Research Program of National University of Defense Technology(ZK19-10,ZK20-33).
文摘Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing coprime array,we propose a high-order extended coprime array(HoECA)for improved direction of arrival(DOA)estimation.We first derive the closed-form expressions for the range of consecutive lags.Then,by changing the inter-element spacing of a uniform linear array(ULA),three cases are proposed and discussed.It is indicated that the HoECA can obtain the largest number of consecutive lags when the spacing takes the maximum value.Finally,by comparing it with the other sparse arrays,the optimized HoECA enjoys a larger number of consecutive lags with mitigating mutual coupling.Simulation results are shown to evaluate the superiority of HoECA over the others in terms of DOF,mutual coupling leakage and estimation accuracy.
基金Project(2011AA010101) supported by the National High Technology Research and Development Program of China
文摘To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was divided into three parts: running time, dwell time and intersection delay time, and the data were divided into three categories of historical data, static data and real-time data. The bus arrival time was obtained by fusion computing the real-time data in perception layer together with historical data and static data in collaborative layer. The validity of the collaborative model was verified by the data of a typical urban bus line in Shanghai, and 1538 sets of data were collected and analyzed from three different perspectives. By comparing the experimental results with the actual results, it is shown that the experimental results are with higher prediction accuracy, and the collaborative prediction model adopted is able to meet the demand for bus arrival prediction.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.
基金supported by the National Natural Science Foundation of China (60771042 60728101+2 种基金 60927002)the NSAF (10776003)the "111" Project (B07046)
文摘When the information of mutual coupling and shadowing effect of a conformal antenna array are unknown, the performance of direction of arrival (DOA) estimation will be seriously degraded by using some classical methods, such as the multiple signal classification (MUSIC) algorithm. Meanwhile it is difficult to measure or estimate the shadowing effect. The DOA estimation for a conformal uniform circular array (UCA) is studied. Firstly, the azimuthal angle is separated from all the unknown information by transforming the UCA from the element space to the mode space. Then the rank reduction (RARE) algorithm is applied in the estima- tion of the azimuthal angle. The π ambiguity existed in the RARE is solved by the beam forming. The main advantage of this method is that it does not need to measure the mutual coupling and the shadowing effect. Compared with the subarray method, it will not decrease the aperture of the array. Simulation results validate the advantages of the method.
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
基金Project(51278455)supported by the National Natural Science Foundation of ChinaProject(2012M521175)supported by the National Science Foundation for Post-doctoral Scientists of ChinaProject(Bsh1202056)supported by and the Excellent Postdoctoral Science Foundation of Zhejiang Province,China
文摘The delay vehicles experience at signalized intersections is one of the most important indicators for measuring intersection performance. The interpretation of delay variability evolvement at intersections gives a comprehensive insight into arterial traffic operation. Thus, an analytical model is proposed to investigate delay variability at coordinated intersections. Two different flow rates are assumed for both effective red and green periods in cumulative curves, through which the effect of signal coordination is incorporated in delay estimation. Then, an analogy of Markov chain process is used to explore the mechanism of stochastic overflow queue at signalized intersections. Numerical case studies show that with the decrease of arrival proportions during green, the shape of delay distribution in both undersaturation and oversaturation cases shifts faster towards higher values, implying that the coordination effect between paired intersections has a great effect on the delay distribution. As for delay fluctuation range, favorable coordination is demonstrated to be able to weaken the variability of delay estimates especially for undersaturation conditions.
文摘针对低空经济发展涉及的安全管理问题,在总结低空经济相关技术路线原理及落地方案的运行经验,分析低空安防普适性的4个建设方案:雷达与通感一体技术融合方案、广播式自动相关监视技术方案、远程识别技术方案和基于TDOA(time difference of arrival)无线电技术的多源融合方案的基础上,构建无人飞行器探测技术评价指标体系,并建立了一种基于决策试验评估实验室(decision-making trial and evaluation laboratory, DEMATEL)和优劣解距离法(technique for order preference by similarity to an ideal solution, TOPSIS)的多属性评价方法。结果发现,以TDOA为基础的多源融合方案是构建城市低空安防体系的有效路径和普适性方案。研究表明,低空安防体系的建设是一个系统性工程,需要政府、企业和社会各方的共同努力,在技术、数据、运营等多个层面进行整合,以适应未来低空经济的发展需求。
基金supported by the National Natural Science Foundation of China(62301598).
文摘To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a deep unfolded amplitude-phase error self-calibration network.Firstly,a sparse-based DOA model with an array convex error restriction is established,which gets resolved via an alternating iterative minimization(AIM)algo-rithm.The algorithm is then unrolled to a deep network known as AE-AIM Network(AE-AIM-Net),where all parameters are opti-mized through multi-task learning using the constructed com-plete dataset.The results of the simulation and theoretical analy-sis suggest that the proposed unfolded network achieves lower computational costs compared to typical sparse recovery meth-ods.Furthermore,it maintains excellent estimation performance even in the presence of array magnitude-phase errors.
基金supported by the National Natural Science Foundation of China (62071144)
文摘Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.
文摘To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.
基金supported by the National Natural Science Foundation of China (62101359)Sichuan University and Yibin Municipal People’s Government University and City Strategic Cooperation Special Fund Project (2020CDYB-29)+1 种基金the Science and Technology Plan Transfer Payment Project of Sichuan Province (2021ZYSF007)the Key Research and Development Program of Science and Technology Department of Sichuan Province (2020YFS0575,2021KJT0012-2 021YFS-0067)。
文摘Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.
基金supported by the National Basic Research Program of China。
文摘With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.
基金supported by the National Natural Science Foundation of China(71991464,71921001)Fundamental Research Funds for the Central Universities,General Program(WK2040000053)Key Program(YD2040002027)。
文摘Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.
文摘深入研究了UWB(ultra wideband)无线传感器网络中基于匹配滤波门限检测的TOA(time of arrival)估计算法.针对现有算法的不足,提出了一种三步TOA估计算法:先确定DP(direct path)搜索区域,然后使用门限检测确定DP的粗略位置,最后精确搜索到DP的中心.其中,用于计算检测门限的门限因子依据匹配滤波输出的峭度动态设置,设置模型独立于信道模式,其正确性通过与使用固定门限因子所获得的性能对比进行了验证.与其他算法的性能对比仿真结果表明,所提出的三步TOA估计算法在运算效率和TOA估计精度上取得了较好折衷,适合于当前实际应用.还通过对TOA估计误差的统计分析讨论了测距结果的可信度:依据峭度将测距结果划分为可信和不可信两个级别,并为各级别的TOA估计误差分别了建立概率密度模型.在定位模块中有效利用这些可信度信息,可进一步提高定位精度.
基金Supported by the Major Program of the National Natural Science Foundation of China under Grant No.60432040(国家自然科学基金重点项目)
文摘为了设计一种以较小运算量获得较高测距精度的TOA(time of arrival)估计算法以适合节点运算能力有限的UWB(ultra wideband)无线传感器网络,提出了一种结合能量检测与匹配滤波的两步TOA估计方法.分析了该方法的工作原理,指出了第1步中DP(direct path)块检测成功率及第2步中匹配滤波门限因子设置的重要性.通过仿真对影响DP块检测成功率的两个因素,即DP块检测算法的选用和能量积分周期的设置进行了讨论.提出了依据能量采样序列中DP块与最小块比值DMR(DP to minimum energy sample ratio)动态设置匹配滤波门限因子的思想,并为其建立了数学模型.仿真结果表明,两步TOA估计方法在运算量比单一的基于匹配滤波的相干算法小很多的情况下,获得了比单一的基于能量检测的非相干方法更好的TOA估计性能,从而更适合应用于有低复杂度、低能耗设计需求的传感器节点中.