A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The re...A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The real-time dwell scheduling algorithm based on the scheduling gain is presented with the help of two heuristic rules. The simulation results demonstrate that compared with the conventional adaptive scheduling method, the algorithm proposed not only increases the scheduling gain and the time utility but also decreases the task drop rate.展开更多
Opportunistic array radar (OAR) is a new generation radar system based on the stealth of the platform, which can improve the modern radar performance effectively. Designing the orthogonal code sets with low autocorr...Opportunistic array radar (OAR) is a new generation radar system based on the stealth of the platform, which can improve the modern radar performance effectively. Designing the orthogonal code sets with low autocorrelation and cross-correlation is a key issue for OAR. This paper proposes a novel hybrid genetic algorithm (HGA) and designs the polyphase orthogonal code sets with low autocorrelation and cross-correlation properties, which can be used in the OAR system. The novel algorithm combines with simulated annealing (SA) and genetic algorithm (GA), adds in keeping best individuals and competition in small scope, and introduces grey correlation evaluation to evaluate fitness function. These avoid the premature convergence problem existed in GA and enhance the global searching capability. At last, the genetic results are optimized to obtain the best solution by using greedy algorithm. The simulation results show that the proposed algorithm is effective for the design of orthogonal phase signals used in OAR systems.展开更多
A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positio...A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.展开更多
A scheduling algorithm is presented aiming at the task scheduling problem in the phased array radar. Rather than assuming the scheduling interval(SI) time, which is the update interval of the radar invoking the schedu...A scheduling algorithm is presented aiming at the task scheduling problem in the phased array radar. Rather than assuming the scheduling interval(SI) time, which is the update interval of the radar invoking the scheduling algorithm, to be a fixed value,it is modeled as a fuzzy set to improve the scheduling flexibility.The scheduling algorithm exploits the fuzzy set model in order to intelligently adjust the SI time. The idle time in other SIs is provided for SIs which will be overload. Thereby more request tasks can be accommodated. The simulation results show that the proposed algorithm improves the successful scheduling ratio by 16%,the threat ratio of execution by 16% and the time utilization ratio by 15% compared with the highest task mode priority first(HPF)algorithm.展开更多
An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiti...An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiting duration is able to be utilized to transmit or receive subtasks, namely the pulse interleaving,as well as the receiving durations of different tasks are able to be overlapped. The algorithm decomposes the pulse interleaving scheduling analysis into the time constraint check and the energy constraint check, and schedules online all kinds of tasks that are able to be interleaved. Thereby the waiting duration and the receiving duration in the DAR task are both fully utilized. The simulation results verify the performance improvement and the high efficiency of the proposed algorithm compared with the existing ones.展开更多
Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources c...Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.展开更多
A cued search algorithm with uncertain detection performance is proposed for phased array radars. Firstly, a target search model based on the information gain criterion is presented with known detection performance, a...A cued search algorithm with uncertain detection performance is proposed for phased array radars. Firstly, a target search model based on the information gain criterion is presented with known detection performance, and the statistical characteristic of the detection probability is calculated by using the fluctuant model of the target radar cross section (RCS). Secondly, when the detection probability is completely unknown, its probability density function is modeled with a beta distribution, and its posterior probability distribution with the radar observation is derived based on the Bayesian theory. Finally simulation results show that the cued search algorithm with a known RCS fluctuant model can achieve the best performance, and the algorithm with the detection probability modeled as a beta distribution is better than that with a random selected detection probability because the model parameters can be updated by the radar observation to approach to the real value of the detection probability.展开更多
The seriously range-ambiguous clutter is one of the main problems in clutter suppression for hypersonic vehicle-borne forward-looking radar. An approach based on the frequency diverse array (FDA) technique is proposed...The seriously range-ambiguous clutter is one of the main problems in clutter suppression for hypersonic vehicle-borne forward-looking radar. An approach based on the frequency diverse array (FDA) technique is proposed to mitigate the range ambiguous clutter. The frequency increment is designed to distinguish the clutter at ambiguous ranges and suppress the clutter by using a subspace projection algorithm. On the platform with high altitude or limited array antennas, the proposed method performs better for its independence of the elevation degrees-of-freedom (DOF). Finally, simulation results verify the effectiveness of the proposed method.展开更多
The computer control techniques applicable to electronically scanned multifunction radars are presented. The software and hardware architecture for the real time control and the data processing within a phased array ...The computer control techniques applicable to electronically scanned multifunction radars are presented. The software and hardware architecture for the real time control and the data processing within a phased array radar are described. The software system comprising a number of tasks is written in C language and implemented. The results show that the algorithm for the multitask adaptive scheduling and the multitarget data processing is suitable for multifunction phased array radars.展开更多
The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it wi...The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.展开更多
For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consis...For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.展开更多
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ...For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.展开更多
For coping with the multiple target tracking in the presence of complex time-varying environments and unknown target information, a time resource management scheme based on chance-constraint programming(CCP) employi...For coping with the multiple target tracking in the presence of complex time-varying environments and unknown target information, a time resource management scheme based on chance-constraint programming(CCP) employing fuzzy logic priority is proposed for opportunistic array radar(OAR). In this scheme,the total beam illuminating time is minimized by effective time resource allocation so that the desired tracking performance is achieved. Meanwhile, owing to the randomness of radar cross section(RCS), the CCP is used to balance tracking accuracy and time resource conditioned on the specified confidence level. The adaptive fuzzy logic prioritization, imitating the human decision-making process for ranking radar targets, can realize the full potential of radar. The Bayesian Crame ′r-Rao lower bound(BCRLB) provides us with a low bound of localization estimation root-mean-square error(RMSE), and equally important, it can be calculated predictively. Consequently, it is employed as an optimization criterion for the time resource allocation scheme. The stochastic simulation is integrated into the genetic algorithm(GA) to compose a hybrid intelligent optimization algorithm to solve the CCP optimization problem. The simulation results show that the time resource is saved strikingly and the radar performance is also improved.展开更多
In most multi-function phased array radar applications, multiple missions, including airspace searching and target tracking, are usually performed simultaneously by the digital beam-forming technique and the time divi...In most multi-function phased array radar applications, multiple missions, including airspace searching and target tracking, are usually performed simultaneously by the digital beam-forming technique and the time dividing method. This paper presents a novel method to classify pulses of different missions from an interleaved pulse sequence emitted by the same radar, which is significant in radar electronic reconnaissance and electronic support measure. Firstly, two hypotheses, i.e., pulse relativity within the same mission and pulse independence among different missions, are proposed by analyzing the antenna pattern and the beam scheduling method of the phased array radar. Based on the above two hypotheses, an optimal model for pulse classification is exploited with pulse amplitude series, where the absolute-value sum of second order difference is taken as the optimal kernel to measure sequence smooth continuity. Finally, several pieces of sequences under different numbers of missions and tracking data rates are simulated for algorithm verification. The simulation results show that the long data length and the high data rate will increase classification efficiency due to the validity of the two hypotheses in sufficient pulse amplitude sequence.展开更多
文摘A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The real-time dwell scheduling algorithm based on the scheduling gain is presented with the help of two heuristic rules. The simulation results demonstrate that compared with the conventional adaptive scheduling method, the algorithm proposed not only increases the scheduling gain and the time utility but also decreases the task drop rate.
基金supported by the National Natural Science Foundation of China(6107116461271327)the Aviation Fund(20110052001)
文摘Opportunistic array radar (OAR) is a new generation radar system based on the stealth of the platform, which can improve the modern radar performance effectively. Designing the orthogonal code sets with low autocorrelation and cross-correlation is a key issue for OAR. This paper proposes a novel hybrid genetic algorithm (HGA) and designs the polyphase orthogonal code sets with low autocorrelation and cross-correlation properties, which can be used in the OAR system. The novel algorithm combines with simulated annealing (SA) and genetic algorithm (GA), adds in keeping best individuals and competition in small scope, and introduces grey correlation evaluation to evaluate fitness function. These avoid the premature convergence problem existed in GA and enhance the global searching capability. At last, the genetic results are optimized to obtain the best solution by using greedy algorithm. The simulation results show that the proposed algorithm is effective for the design of orthogonal phase signals used in OAR systems.
基金the High Technology Research and Development Programme of China (2003AA134030)
文摘A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.
基金supported by the National Youth Foundation(61503408)
文摘A scheduling algorithm is presented aiming at the task scheduling problem in the phased array radar. Rather than assuming the scheduling interval(SI) time, which is the update interval of the radar invoking the scheduling algorithm, to be a fixed value,it is modeled as a fuzzy set to improve the scheduling flexibility.The scheduling algorithm exploits the fuzzy set model in order to intelligently adjust the SI time. The idle time in other SIs is provided for SIs which will be overload. Thereby more request tasks can be accommodated. The simulation results show that the proposed algorithm improves the successful scheduling ratio by 16%,the threat ratio of execution by 16% and the time utilization ratio by 15% compared with the highest task mode priority first(HPF)algorithm.
文摘An online pulse interleaving scheduling algorithm is proposed for a solution to the task scheduling problem in the digital array radar(DAR). The full DAR task structure is explicitly considered in a way that the waiting duration is able to be utilized to transmit or receive subtasks, namely the pulse interleaving,as well as the receiving durations of different tasks are able to be overlapped. The algorithm decomposes the pulse interleaving scheduling analysis into the time constraint check and the energy constraint check, and schedules online all kinds of tasks that are able to be interleaved. Thereby the waiting duration and the receiving duration in the DAR task are both fully utilized. The simulation results verify the performance improvement and the high efficiency of the proposed algorithm compared with the existing ones.
基金the Aeronautical Science Foundation of China(2017ZC53021)the Open Project Fund of CETC Key Laboratory of Data Link Technology(CLDL-20182101).
文摘Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.
基金supported by the National Natural Science Foundation of China (61372165)the Postdoctoral Science Foundation of China (201150M15462012T50874)
文摘A cued search algorithm with uncertain detection performance is proposed for phased array radars. Firstly, a target search model based on the information gain criterion is presented with known detection performance, and the statistical characteristic of the detection probability is calculated by using the fluctuant model of the target radar cross section (RCS). Secondly, when the detection probability is completely unknown, its probability density function is modeled with a beta distribution, and its posterior probability distribution with the radar observation is derived based on the Bayesian theory. Finally simulation results show that the cued search algorithm with a known RCS fluctuant model can achieve the best performance, and the algorithm with the detection probability modeled as a beta distribution is better than that with a random selected detection probability because the model parameters can be updated by the radar observation to approach to the real value of the detection probability.
基金supported by the National Natural Science Foundation of China(61301282)
文摘The seriously range-ambiguous clutter is one of the main problems in clutter suppression for hypersonic vehicle-borne forward-looking radar. An approach based on the frequency diverse array (FDA) technique is proposed to mitigate the range ambiguous clutter. The frequency increment is designed to distinguish the clutter at ambiguous ranges and suppress the clutter by using a subspace projection algorithm. On the platform with high altitude or limited array antennas, the proposed method performs better for its independence of the elevation degrees-of-freedom (DOF). Finally, simulation results verify the effectiveness of the proposed method.
文摘The computer control techniques applicable to electronically scanned multifunction radars are presented. The software and hardware architecture for the real time control and the data processing within a phased array radar are described. The software system comprising a number of tasks is written in C language and implemented. The results show that the algorithm for the multitask adaptive scheduling and the multitarget data processing is suitable for multifunction phased array radars.
基金supported by the National Natural Science Foundation of China(6190149661871385)。
文摘The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6278)the China Postdoctoral Science Foundation(2015M582586)the China Academy of Space Technology Innovation Fund
文摘For multi-channel synthetic aperture radar(SAR) systems, since the minimum antenna area constraint is eliminated,wide swath and high resolution SAR image can be achieved.However, the unavoidable array errors, consisting of channel gainphase mismatch and position uncertainty, significantly degrade the performance of such systems. An iteration-free method is proposed to simultaneously estimate position and gain-phase errors.In our research, the steering vectors corresponding to a pair of Doppler bins within the same range bin are studied in terms of their rotational relationships. The method is based on the fact that the rotational matrix only depends on the position errors and the frequency spacing between the paired Doppler bins but is independent of gain-phase error. Upon combining the projection matrices corresponding to the paired Doppler bins, the position errors are directly obtained in terms of extracting the rotational matrix in a least squares framework. The proposed method, when used in conjunction with the self-calibration algorithm, performs stably as well as has less computational load, compared with the conventional methods. Simulations reveal that the proposed method behaves better than the conventional methods even when the signal-to-noise ratio(SNR) is low.
基金supported by the National Natural Science Foundation of China(61640006)the Natural Science Foundation of Shannxi Province,China(2019JM-386).
文摘For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.
基金supported by the National Natural Science Foundation of China(6127132761671241)
文摘For coping with the multiple target tracking in the presence of complex time-varying environments and unknown target information, a time resource management scheme based on chance-constraint programming(CCP) employing fuzzy logic priority is proposed for opportunistic array radar(OAR). In this scheme,the total beam illuminating time is minimized by effective time resource allocation so that the desired tracking performance is achieved. Meanwhile, owing to the randomness of radar cross section(RCS), the CCP is used to balance tracking accuracy and time resource conditioned on the specified confidence level. The adaptive fuzzy logic prioritization, imitating the human decision-making process for ranking radar targets, can realize the full potential of radar. The Bayesian Crame ′r-Rao lower bound(BCRLB) provides us with a low bound of localization estimation root-mean-square error(RMSE), and equally important, it can be calculated predictively. Consequently, it is employed as an optimization criterion for the time resource allocation scheme. The stochastic simulation is integrated into the genetic algorithm(GA) to compose a hybrid intelligent optimization algorithm to solve the CCP optimization problem. The simulation results show that the time resource is saved strikingly and the radar performance is also improved.
文摘In most multi-function phased array radar applications, multiple missions, including airspace searching and target tracking, are usually performed simultaneously by the digital beam-forming technique and the time dividing method. This paper presents a novel method to classify pulses of different missions from an interleaved pulse sequence emitted by the same radar, which is significant in radar electronic reconnaissance and electronic support measure. Firstly, two hypotheses, i.e., pulse relativity within the same mission and pulse independence among different missions, are proposed by analyzing the antenna pattern and the beam scheduling method of the phased array radar. Based on the above two hypotheses, an optimal model for pulse classification is exploited with pulse amplitude series, where the absolute-value sum of second order difference is taken as the optimal kernel to measure sequence smooth continuity. Finally, several pieces of sequences under different numbers of missions and tracking data rates are simulated for algorithm verification. The simulation results show that the long data length and the high data rate will increase classification efficiency due to the validity of the two hypotheses in sufficient pulse amplitude sequence.