A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle ...As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.展开更多
As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost ...As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.展开更多
In this paper, a new amplitude quantization synthesis method for ultralow sidelobe phased arrays is proposed, which is based on the constrained nonlinear optimization algorithm. By introducing a set of critical constr...In this paper, a new amplitude quantization synthesis method for ultralow sidelobe phased arrays is proposed, which is based on the constrained nonlinear optimization algorithm. By introducing a set of critical constraint conditions into the optimization model, we can directly quantize the amplitude distribution instead of replacing it with a continuous equivalent aperture antenna. The mutual coupling and the element patterns are also considered in the quantization synthesis. Finally, some array simulation results are given to show the effectiveness of the method.展开更多
The investigation of the effect of electrical and mechanical errors on the performance of a large active phased array antenna is studied. These errors can decrease the antenna performance, for instance, the gain reduc...The investigation of the effect of electrical and mechanical errors on the performance of a large active phased array antenna is studied. These errors can decrease the antenna performance, for instance, the gain reduction, side lobe level enhancement, and incorrect beam direction. In order to improve the performance of the antenna in the presence of these errors, phase error correction of large phased array antennas using the genetic algorithm(GA) is implemented. By using the phase compensation method, the antenna overall radiation pattern is recovered close to the ideal radiation pattern without error. By applying the simulation data to a 32×40 array of elements with a square grid at the frequency of S-band and measurement of the radiation pattern, the effectiveness of the proposed method is verified.展开更多
This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic ...This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.展开更多
A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synth...A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.展开更多
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per...An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
文摘As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.
基金Project(B01B1203)supported by Sichuan Province Key Laboratory of Comprehensive Transportation,ChinaProject(SWJTU09BR141)supported by the Southwest Jiaotong University,China
文摘As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.
文摘In this paper, a new amplitude quantization synthesis method for ultralow sidelobe phased arrays is proposed, which is based on the constrained nonlinear optimization algorithm. By introducing a set of critical constraint conditions into the optimization model, we can directly quantize the amplitude distribution instead of replacing it with a continuous equivalent aperture antenna. The mutual coupling and the element patterns are also considered in the quantization synthesis. Finally, some array simulation results are given to show the effectiveness of the method.
文摘The investigation of the effect of electrical and mechanical errors on the performance of a large active phased array antenna is studied. These errors can decrease the antenna performance, for instance, the gain reduction, side lobe level enhancement, and incorrect beam direction. In order to improve the performance of the antenna in the presence of these errors, phase error correction of large phased array antennas using the genetic algorithm(GA) is implemented. By using the phase compensation method, the antenna overall radiation pattern is recovered close to the ideal radiation pattern without error. By applying the simulation data to a 32×40 array of elements with a square grid at the frequency of S-band and measurement of the radiation pattern, the effectiveness of the proposed method is verified.
基金supported by the National Natural Science Foundation of China (60901055)
文摘This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.
基金the National Natural Science Foundation of China (60502045).
文摘A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.
文摘An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.