Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current r...Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.展开更多
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recen...This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.展开更多
The ballistic performance,and behaviour,of an armour system is governed by two major sets of variables,geometrical and material.Of these,the consistency of performance,especially against small arms ammunition,will dep...The ballistic performance,and behaviour,of an armour system is governed by two major sets of variables,geometrical and material.Of these,the consistency of performance,especially against small arms ammunition,will depend upon the consistency of the properties of the constituent materials.In a body armour system for example,fibre diameter,areal density of woven fabric,and bulk density of ceramic are examples of critical parameters and monitoring such parameters will form the backbone of associated quality control procedures.What is often overlooked,because it can fall into the User’s domain,are the interfaces that exist between the various products;the carrier,the Soft Armour Insert(SAI),and the one or two hard armour plates(HAP1 and HAP2).This is especially true if the various products are sourced from different suppliers.展开更多
High-performance ballistic fibers,such as aramid fiber and ultra-high-molecular-weight polyethylene(UHMWPE),are commonly used in anti-ballistic structures due to their low density,high tensile strength and high specif...High-performance ballistic fibers,such as aramid fiber and ultra-high-molecular-weight polyethylene(UHMWPE),are commonly used in anti-ballistic structures due to their low density,high tensile strength and high specific modulus.However,their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure.In contrast,carbon fiber reinforced epoxy resin matrix composites(CFRP)have the characteristics of high modulus in the thickness direction and high shear resistance.However,carbon fibers are rarely used and applied for protection purposes.A hybridization with aramid fiber reinforced epoxy resin matrix composites(AFRP)and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites.The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated.Through conducting mechanical property tests and ballistic tests,two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software,respectively.The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced.The ballistic tests'results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7%of AFRP.When CFRP was on the striking face,the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage.The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process.These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt%and 30 wt%.展开更多
Dynamic tensile impact properties of aramid (Technora) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns ...Dynamic tensile impact properties of aramid (Technora) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.展开更多
基金National Natural Science Foundation of China(Grant Nos.12172179,11802141 and U2341244)National Natural Science Foundation for Young Scientists of China(Grant No.12202207)+3 种基金China Postdoctoral Science Foundation(Grant No.2022M711623)Natural Science Foundation of Jiangsu Province(Grant No.BK20220968)Open Funds for Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202201)Open Funds for Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province(Grant No.22kfgk03)。
文摘Aramid fibers,due to their relatively high inter-yarn friction,high strength,high modulus,and other characteristics,have become a typical representative of flexible anti-ballistic materials in modern warfare.Current research on the anti-penetration of aramid fabrics mostly focuses unilaterally on the structure and performance of aramid fabrics or the shape and size of projectiles,with fewer studies on the coupled effect of both on ballistic performance.This study analyzes how the coupling relationship(or size effect)between the projectile and fiber bundle dimensions affects the fabric ballistic performance from a mesoscopic scale perspective.Taking plain weave aramid fabric as the research object,considering different diameter projectiles,through a large number of ballistic impact tests and numerical simulations,parameters such as ballistic limit velocity,average energy absorption of fabric,and specific energy absorption ratio(average energy absorption of fabric divided by projectile cross-sectional area)are obtained for ballistic performance analysis.The influence law of projectile size on the ballistic performance of high-performance fabrics is as follows:The relative range of fitted ballistic limit velocity at different target positions gradually decreases and then stabilizes as the projectile diameter increases,indicating that the fabric structure effect gradually disappears at a projectile diameter of 12 mm;The average ballistic limit velocity at three impact positions,P1,P2,and P3,provides the corresponding ballistic limit velocity for 1000D aramid fabric,which increases with projectile diameter but the rate of increase slows down at an inflection point,which in this study occurs where the fabric structure effect nearly disappears at a projectile diameter of 12 mm;The energy absorption ratio increases and then decreases as the projectile diameter increases from 4 mm to 20 mm,reaching a peak at the diameter of 12 mm due to the gradual disappearance of the fabric structural effect.The projectile diameter of 12 mm corresponds to the coupling size of 11.159,which provides a size design reference for the macroscopic-based continuum models of aramid plain weave fabrics.
文摘This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.
文摘The ballistic performance,and behaviour,of an armour system is governed by two major sets of variables,geometrical and material.Of these,the consistency of performance,especially against small arms ammunition,will depend upon the consistency of the properties of the constituent materials.In a body armour system for example,fibre diameter,areal density of woven fabric,and bulk density of ceramic are examples of critical parameters and monitoring such parameters will form the backbone of associated quality control procedures.What is often overlooked,because it can fall into the User’s domain,are the interfaces that exist between the various products;the carrier,the Soft Armour Insert(SAI),and the one or two hard armour plates(HAP1 and HAP2).This is especially true if the various products are sourced from different suppliers.
文摘High-performance ballistic fibers,such as aramid fiber and ultra-high-molecular-weight polyethylene(UHMWPE),are commonly used in anti-ballistic structures due to their low density,high tensile strength and high specific modulus.However,their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure.In contrast,carbon fiber reinforced epoxy resin matrix composites(CFRP)have the characteristics of high modulus in the thickness direction and high shear resistance.However,carbon fibers are rarely used and applied for protection purposes.A hybridization with aramid fiber reinforced epoxy resin matrix composites(AFRP)and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites.The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated.Through conducting mechanical property tests and ballistic tests,two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software,respectively.The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced.The ballistic tests'results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7%of AFRP.When CFRP was on the striking face,the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage.The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process.These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt%and 30 wt%.
文摘Dynamic tensile impact properties of aramid (Technora) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.