Arabidopsis thaliana ovate family proteins (AtOFPs) is a newly found plant-specific protein family interacting with TALE (3-aa loop extension homeodomain proteins) homeodomain proteins in Arabidopsis. Here, based ...Arabidopsis thaliana ovate family proteins (AtOFPs) is a newly found plant-specific protein family interacting with TALE (3-aa loop extension homeodomain proteins) homeodomain proteins in Arabidopsis. Here, based on bioinformatic analysis, we found that Arabidopsis genome actually encoded 17 OVATE domain-containing proteins. One of them, AtOFP19, has not been previously identified. Based on their amino acid sequence similarity, AtOFPs proteins can be divided into two groups. Most of the AtOFPs were located in nuclear, four of them were presented in chloroplast and the remaining two members appeared in cytoplasmic. A genome- wide microarray based gene expression analysis involving 47 stages of vegetative and reproductive development revealed that AtOFPs have diverse expression pattems. Investigation of proteins interaction showed that nine AtOFPs only interacted with TALE homeodomain proteins, which are fundamental regulators of plant meristem function and leaf development. Our work could provide important leads toward functional genomics studies of ovate family proteins, which may be involved in a previously unrecognized control mechanism in plant development展开更多
The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wal...The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions of MIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designated Gs MIPS2 from wild soybean Glycine soja 07256 was functionally characterized contained an open reading frame(ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated that Gs MIPS2 was induced by salt stress and expressed in roots of soybean. The positive function of Gs MIPS2 under salt response at different growth stages of transgenic Arabidopsis was also elucidated. The results showed that Gs MIPS2 transgenic lines displayed increased tolerance as compared to WT and atmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1, RD29 A, RD29 B, P5 Cs and COR47 were significantly up-regulated in Gs MIPS2 overexpression lines than wild type and atmips2 mutant. Collectively, these results suggested that Gs MIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression of Gs MIPS2 gene from wild soybean improved salt tolerance in transgenic Arabidopsis.展开更多
假单胞菌属(Pseudomonas spp.)是一类重要的食源性致病菌和腐败菌。噬菌体裂解酶具有高效裂解活性和靶向性等特征,可作为有效控制假单胞菌属细菌的新型抗菌剂。随着组学技术的高速发展,大量噬菌体的基因组信息得到破译,为噬菌体裂解酶...假单胞菌属(Pseudomonas spp.)是一类重要的食源性致病菌和腐败菌。噬菌体裂解酶具有高效裂解活性和靶向性等特征,可作为有效控制假单胞菌属细菌的新型抗菌剂。随着组学技术的高速发展,大量噬菌体的基因组信息得到破译,为噬菌体裂解酶生物信息的挖掘提供了数据资源。本研究基于NCBI等数据库,深入挖掘假单胞菌噬菌体裂解酶的理化参数、核心结构域、三维结构等生物信息。结果表明,共筛选获得了81个噬菌体裂解酶序列,此类裂解酶大多为亲水蛋白(80/81),均具有较高的等电点,蛋白总体带正电。在所筛选的裂解酶序列中,共发掘9个保守结构域,分别为Lyz-like super family、yz_endolysin_autolysin、Muramidase、PGRP super family、NlpC/P60、LT-like、Phage_lysis Superfamily、PG_binding_1、PG_binding_3。同源建模分析发现,裂解酶末端α-螺旋上均分布一定的正电荷基团,预测该结构可能赋予其穿透假单胞菌外膜的功能。本研究为假单胞菌噬菌体裂解酶的设计、改造和生产提供理论支撑,为假单胞菌的靶向防控提供重要的数据基础。展开更多
【目的】分析保山猪蛋白转化酶枯草素/酮蛋白4型(proprotein convertase subtilisin/kexin type 4,PCSK4)的分子特征、转录表达调控和蛋白功能。【方法】基于保山猪睾丸全转录组数据,通过生物信息学方法对PCSK4进行功能注释,并构建PCSK...【目的】分析保山猪蛋白转化酶枯草素/酮蛋白4型(proprotein convertase subtilisin/kexin type 4,PCSK4)的分子特征、转录表达调控和蛋白功能。【方法】基于保山猪睾丸全转录组数据,通过生物信息学方法对PCSK4进行功能注释,并构建PCSK4的长链非编码RNA和小RNA(miRNA)调控网络。【结果】PCSK4编码序列长2505 bp,编码834个氨基酸。蛋白质功能分析表明:PCSK4具有较多无规则卷曲和磷酸化位点。进化及邻近基因分析表明:PCSK4在进化过程中保守性较高。功能富集分析表明PCSK4与多个参与精子获能、受精、精卵识别的蛋白(如ACRBP、ACR、ADAM2等)存在互作关系,这些蛋白对应基因的表达量表明:PCSK4与MBTPS1、ACRBP、CDKN2A、DPY19L2显著相关。竞争性内源RNA调控网络分析表明5个miRNA可靶向调控PCSK4,功能注释显示其在生殖过程、蛋白质加工、受精等功能中发挥重要作用。【结论】本研究为进一步探讨PCSK4在保山猪精子发生过程,特别是受精与精子成熟阶段等重要生物学过程提供了基础资料。展开更多
基金Supported by the National Natural Science Foundation of China (30870144)
文摘Arabidopsis thaliana ovate family proteins (AtOFPs) is a newly found plant-specific protein family interacting with TALE (3-aa loop extension homeodomain proteins) homeodomain proteins in Arabidopsis. Here, based on bioinformatic analysis, we found that Arabidopsis genome actually encoded 17 OVATE domain-containing proteins. One of them, AtOFP19, has not been previously identified. Based on their amino acid sequence similarity, AtOFPs proteins can be divided into two groups. Most of the AtOFPs were located in nuclear, four of them were presented in chloroplast and the remaining two members appeared in cytoplasmic. A genome- wide microarray based gene expression analysis involving 47 stages of vegetative and reproductive development revealed that AtOFPs have diverse expression pattems. Investigation of proteins interaction showed that nine AtOFPs only interacted with TALE homeodomain proteins, which are fundamental regulators of plant meristem function and leaf development. Our work could provide important leads toward functional genomics studies of ovate family proteins, which may be involved in a previously unrecognized control mechanism in plant development
基金Supported by "863" Project(2008AA10Z153)the National Natural Science Foundation of China(31171578)+1 种基金Heilongjiang Provincial Higher School Science and Technology Innovation Team Building Program(2011TD005)the National Basic Scientific Talent Training Fund Projects(J1210069)
文摘The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions of MIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designated Gs MIPS2 from wild soybean Glycine soja 07256 was functionally characterized contained an open reading frame(ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated that Gs MIPS2 was induced by salt stress and expressed in roots of soybean. The positive function of Gs MIPS2 under salt response at different growth stages of transgenic Arabidopsis was also elucidated. The results showed that Gs MIPS2 transgenic lines displayed increased tolerance as compared to WT and atmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1, RD29 A, RD29 B, P5 Cs and COR47 were significantly up-regulated in Gs MIPS2 overexpression lines than wild type and atmips2 mutant. Collectively, these results suggested that Gs MIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression of Gs MIPS2 gene from wild soybean improved salt tolerance in transgenic Arabidopsis.
文摘假单胞菌属(Pseudomonas spp.)是一类重要的食源性致病菌和腐败菌。噬菌体裂解酶具有高效裂解活性和靶向性等特征,可作为有效控制假单胞菌属细菌的新型抗菌剂。随着组学技术的高速发展,大量噬菌体的基因组信息得到破译,为噬菌体裂解酶生物信息的挖掘提供了数据资源。本研究基于NCBI等数据库,深入挖掘假单胞菌噬菌体裂解酶的理化参数、核心结构域、三维结构等生物信息。结果表明,共筛选获得了81个噬菌体裂解酶序列,此类裂解酶大多为亲水蛋白(80/81),均具有较高的等电点,蛋白总体带正电。在所筛选的裂解酶序列中,共发掘9个保守结构域,分别为Lyz-like super family、yz_endolysin_autolysin、Muramidase、PGRP super family、NlpC/P60、LT-like、Phage_lysis Superfamily、PG_binding_1、PG_binding_3。同源建模分析发现,裂解酶末端α-螺旋上均分布一定的正电荷基团,预测该结构可能赋予其穿透假单胞菌外膜的功能。本研究为假单胞菌噬菌体裂解酶的设计、改造和生产提供理论支撑,为假单胞菌的靶向防控提供重要的数据基础。