期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Tag clustering algorithm LMMSK: improved K-means algorithm based on latent semantic analysis
被引量:
7
1
作者
Jing Yang
Jun Wang
《Journal of Systems Engineering and Electronics》
SCIE
EI
CSCD
2017年第2期374-384,共11页
With the wide application of Web-2.0 and social software, there are more and more tag-related studies and applications. Because of the randomness and the personalization in users' tagging, tag research continues t...
With the wide application of Web-2.0 and social software, there are more and more tag-related studies and applications. Because of the randomness and the personalization in users' tagging, tag research continues to encounter data space and semantics obstacles. With the min-max similarity (MMS) to establish the initial centroids, the traditional K-means clustering algorithm is firstly improved to the MMSK-means clustering algorithm, the superiority of which has been tested; based on MMSK-means and combined with latent semantic analysis (LSA), here secondly emerges a new tag clustering algorithm, LMMSK. Finally, three algorithms for tag clustering, MMSK-means, tag clustering based on LSA (LSA-based algorithm) and LMMSK, have been run on Matlab, using a real tag-resource dataset obtained from the Delicious Social Bookmarking System from 2004 to 2009. LMMSK's clustering result turns out to be the most effective and the most accurate. Thus, a better tag-clustering algorithm is found for greater application of social tags in personalized search, topic identification or knowledge community discovery. In addition, for a better comparison of the clustering results, the clustering corresponding results matrix (CCR matrix) is proposed, which is promisingly expected to be an effective tool to capture the evolutions of the social tagging system. © 2017 Beijing Institute of Aerospace Information.
展开更多
关键词
application
programs
Data
mining
MATLAB
SEMANTICS
Social
networking
(online)
WEBSITES
在线阅读
下载PDF
职称材料
题名
Tag clustering algorithm LMMSK: improved K-means algorithm based on latent semantic analysis
被引量:
7
1
作者
Jing Yang
Jun Wang
机构
School of Economics and Management
出处
《Journal of Systems Engineering and Electronics》
SCIE
EI
CSCD
2017年第2期374-384,共11页
基金
supported by the National Natural Science Foundation of China(71271018
71531001)
文摘
With the wide application of Web-2.0 and social software, there are more and more tag-related studies and applications. Because of the randomness and the personalization in users' tagging, tag research continues to encounter data space and semantics obstacles. With the min-max similarity (MMS) to establish the initial centroids, the traditional K-means clustering algorithm is firstly improved to the MMSK-means clustering algorithm, the superiority of which has been tested; based on MMSK-means and combined with latent semantic analysis (LSA), here secondly emerges a new tag clustering algorithm, LMMSK. Finally, three algorithms for tag clustering, MMSK-means, tag clustering based on LSA (LSA-based algorithm) and LMMSK, have been run on Matlab, using a real tag-resource dataset obtained from the Delicious Social Bookmarking System from 2004 to 2009. LMMSK's clustering result turns out to be the most effective and the most accurate. Thus, a better tag-clustering algorithm is found for greater application of social tags in personalized search, topic identification or knowledge community discovery. In addition, for a better comparison of the clustering results, the clustering corresponding results matrix (CCR matrix) is proposed, which is promisingly expected to be an effective tool to capture the evolutions of the social tagging system. © 2017 Beijing Institute of Aerospace Information.
关键词
application
programs
Data
mining
MATLAB
SEMANTICS
Social
networking
(online)
WEBSITES
Keywords
application programs
Data mining
MATLAB
Semantics
Social networking (online)
Websites
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Tag clustering algorithm LMMSK: improved K-means algorithm based on latent semantic analysis
Jing Yang
Jun Wang
《Journal of Systems Engineering and Electronics》
SCIE
EI
CSCD
2017
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部