In the re-entry phase of a ballistic missile,decoys can be deployed as a mean to overburden enemy defenses.This results in a single track being split into multiple track-lets.Tracking of these track-lets is a critical...In the re-entry phase of a ballistic missile,decoys can be deployed as a mean to overburden enemy defenses.This results in a single track being split into multiple track-lets.Tracking of these track-lets is a critical task as any miss in the tracking procedure can become a cause of a major threat.The tracking process becomes more complicated in the presence of clutter.The low detection rate is one of the factors that may contribute to increasing the difficulty level in terms of tracking in the cluttered environment.This work introduces a new algorithm for the split event detection and target tracking under the framework of the joint integrated probabilistic data association(JIPDA)algorithm.The proposed algorithm is termed as split event-JIPDA(SE-JIPDA).This work establishes the mathematical foundation for the split target detection and tracking mechanism.The performance analysis is made under different simulation conditions to provide a clear insight into the merits of the proposed algorithm.The performance parameters in these simulations are the root mean square error(RMSE),confirmed true track rate(CTTR)and confirmed split true track rate(CSTTR).展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-sc...The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-scale separation of missile dynamics, a graded sliding mode controller is designed with two sub-sliding surfaces which have invariability to external disturbances and parameter perturbations, and a matrix which comprises three first order low pass filters is introduced to prevent “explosion of terms”. Owing to the upper bounds of the uncertainties are difficult to obtain in advance, adaptive laws are introduced to estimate the values of the uncertainties in real-time. Eventually, the numerical simulation results given to show the proposed controller can ensure the steady flight of missiles.展开更多
Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. T...Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. This model containing the probability of acquiring anti-ship missile, threat estimation, firepower distribution, interception, effectiveness evaluation and firepower turning, can dynamically simulate the antagonism process of anti-ship missile attack stream and anti-air missile weapon system. The anti-ship missile's saturation attack stream for different ship-to-air missile systems can be calculated quantitatively. The simulated results reveal the relations among the anti-ship missile saturation attack and the attack intensity of anti-ship missile, interception mode and the main parameters of anti-air missile weapon system. It provides a theoretical basis for the effective operation of anti-ship missile.展开更多
To design the terminal maneuver strategy of an anti-ship missile,first,the analytical solution of miss distance when an anti-ship missile has planar weaving maneuver and three-dimension spiral maneuver is presented,in...To design the terminal maneuver strategy of an anti-ship missile,first,the analytical solution of miss distance when an anti-ship missile has planar weaving maneuver and three-dimension spiral maneuver is presented,in which not only the amplitude and frequency are considered but also the initial phase is taken into account.Next,based on the analytical solution of miss distance,the effects on the miss distance of the amplitude,frequency,initial phase of the anti-ship missile's maneuver acceleration and the order of flight control system of the air-ship missile are analyzed.Finally,the optimum weaving maneuver and spiral maneuver which make the miss distance be the largest under some conditions are designed,which is of important meaning for increasing the survival probability of the anti-ship missile.展开更多
Traditional intercept probability model has some drawbacks and can not meet the demands of command and control system. Aiming at this problem, a new calculation method based on search theory, terminal control area dis...Traditional intercept probability model has some drawbacks and can not meet the demands of command and control system. Aiming at this problem, a new calculation method based on search theory, terminal control area distribution function of anti-ship missile, target distribution function and missile's radar scan feature is proposed. Under the condition of common target distribution, an intercept probability model for present point attacking is determined. The simulation verifies its effectiveness and establishes the selecting model for aiming point when enemy ships evade in high speed.展开更多
动能拦截弹(kinetic energy interceptor,KEI)主要用于拦截在助推段、上升段以及中段飞行的中远程和洲际弹道导弹,具有高速、高加速的特点。通过文献资料的研究分析和建模仿真,对KEI导弹的总体参数、气动参数、动力参数进行了反设计和研...动能拦截弹(kinetic energy interceptor,KEI)主要用于拦截在助推段、上升段以及中段飞行的中远程和洲际弹道导弹,具有高速、高加速的特点。通过文献资料的研究分析和建模仿真,对KEI导弹的总体参数、气动参数、动力参数进行了反设计和研究,并对KEI导弹的飞行性能和拦截性能进行了仿真,结果表明:KEI导弹能够在约60 s内加速至6 km/s,并对典型目标具备在助推段/上升段拦截弹道导弹的能力,对国内拦截武器的发展和研究具有参考意义。展开更多
文摘In the re-entry phase of a ballistic missile,decoys can be deployed as a mean to overburden enemy defenses.This results in a single track being split into multiple track-lets.Tracking of these track-lets is a critical task as any miss in the tracking procedure can become a cause of a major threat.The tracking process becomes more complicated in the presence of clutter.The low detection rate is one of the factors that may contribute to increasing the difficulty level in terms of tracking in the cluttered environment.This work introduces a new algorithm for the split event detection and target tracking under the framework of the joint integrated probabilistic data association(JIPDA)algorithm.The proposed algorithm is termed as split event-JIPDA(SE-JIPDA).This work establishes the mathematical foundation for the split target detection and tracking mechanism.The performance analysis is made under different simulation conditions to provide a clear insight into the merits of the proposed algorithm.The performance parameters in these simulations are the root mean square error(RMSE),confirmed true track rate(CTTR)and confirmed split true track rate(CSTTR).
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.
文摘The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-scale separation of missile dynamics, a graded sliding mode controller is designed with two sub-sliding surfaces which have invariability to external disturbances and parameter perturbations, and a matrix which comprises three first order low pass filters is introduced to prevent “explosion of terms”. Owing to the upper bounds of the uncertainties are difficult to obtain in advance, adaptive laws are introduced to estimate the values of the uncertainties in real-time. Eventually, the numerical simulation results given to show the proposed controller can ensure the steady flight of missiles.
文摘Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. This model containing the probability of acquiring anti-ship missile, threat estimation, firepower distribution, interception, effectiveness evaluation and firepower turning, can dynamically simulate the antagonism process of anti-ship missile attack stream and anti-air missile weapon system. The anti-ship missile's saturation attack stream for different ship-to-air missile systems can be calculated quantitatively. The simulated results reveal the relations among the anti-ship missile saturation attack and the attack intensity of anti-ship missile, interception mode and the main parameters of anti-air missile weapon system. It provides a theoretical basis for the effective operation of anti-ship missile.
基金Supported by the Ministerial Level Advanced Research Foundation(0528)
文摘To design the terminal maneuver strategy of an anti-ship missile,first,the analytical solution of miss distance when an anti-ship missile has planar weaving maneuver and three-dimension spiral maneuver is presented,in which not only the amplitude and frequency are considered but also the initial phase is taken into account.Next,based on the analytical solution of miss distance,the effects on the miss distance of the amplitude,frequency,initial phase of the anti-ship missile's maneuver acceleration and the order of flight control system of the air-ship missile are analyzed.Finally,the optimum weaving maneuver and spiral maneuver which make the miss distance be the largest under some conditions are designed,which is of important meaning for increasing the survival probability of the anti-ship missile.
文摘Traditional intercept probability model has some drawbacks and can not meet the demands of command and control system. Aiming at this problem, a new calculation method based on search theory, terminal control area distribution function of anti-ship missile, target distribution function and missile's radar scan feature is proposed. Under the condition of common target distribution, an intercept probability model for present point attacking is determined. The simulation verifies its effectiveness and establishes the selecting model for aiming point when enemy ships evade in high speed.
文摘动能拦截弹(kinetic energy interceptor,KEI)主要用于拦截在助推段、上升段以及中段飞行的中远程和洲际弹道导弹,具有高速、高加速的特点。通过文献资料的研究分析和建模仿真,对KEI导弹的总体参数、气动参数、动力参数进行了反设计和研究,并对KEI导弹的飞行性能和拦截性能进行了仿真,结果表明:KEI导弹能够在约60 s内加速至6 km/s,并对典型目标具备在助推段/上升段拦截弹道导弹的能力,对国内拦截武器的发展和研究具有参考意义。