The migration of nitroglycerin(NG) has always been the critical issue that harmfully impacts the structural integrity and operational reliability of the solid rocket motor, which is mainly composed by Nitrate Ester Pl...The migration of nitroglycerin(NG) has always been the critical issue that harmfully impacts the structural integrity and operational reliability of the solid rocket motor, which is mainly composed by Nitrate Ester Plasticized Polyether(NEPE) propellant/Hydroxyl-terminated Polybutadiene(HTPB) liner/Ethylene Propylene Diene Monomer(EPDM) insulation bonding system. This paper proposes an innovative surface modification method attempting to modify the EPDM insulation layer coated with reduced graphene oxide(RGO), which exhibits ability to weaken the NG absorption by EPDM insulation layer,blocking the pathway of NG migration into EPDM insulation materials. The microstructure of RGO-coated layer was analyzed and the formation mechanism was investigated. The RGO-coated layer is well bonded to the HTPB liner, and its anti-migration performance to NG at different temperatures has been evaluated. Comparing with blank samples under the same storage conditions, the RGO-coated layers can reduce the diffusion coefficient of NG by up to 87.3% and increase the diffusion activation energy of NG by14.8 kJ,mol^(-1). This research provides a new strategy to effectively inhibit NG migration in NEPE propellant/HTPB liner/EPDM insulation bonding system.展开更多
Hydroxyl-terminated polybutadiene/toluene diisocyanate(HTPB/TDI)system is widely used in composite solid propellants.The migrations of plasticizers and water molecules from solid propellants and surrounding environmen...Hydroxyl-terminated polybutadiene/toluene diisocyanate(HTPB/TDI)system is widely used in composite solid propellants.The migrations of plasticizers and water molecules from solid propellants and surrounding environment to the inhibitor have always been the important issues.This study focuses on the preparation,characterization and anti-migration behavior of graphene oxide(GO)/HTPB nanocomposite liner.The GO/HTPB(GH)composite liners affect the migration of small molecules through a tighter cross-linked structure and weakening function of small molecule adsorption.The anti-migration performance of the liner at different temperatures was analyzed,and the influence of the added amount of GO on the anti-migration performance and adhesion performance was also systematically studied.The overall performance of the liner is optimized when the amount of GO filler is 0.3 wt%.After adding 0.3 wt%GO,the concentration of dioctyl sebacate(DOS)migrated into the liner is decreased by 23.28%,and the concentration of water molecules is decreased by 51.89%,indicating that the introduction of GO can significantly improve the anti-migration performance of the liner.In addition,the bond strength is greatly increased from 0.25 MPa to 0.95 MPa,which meets the application requirements of the current propellant system.This research provides an important way for the preparation of structure-function synergistic anti-migration composite liners.展开更多
基金National Natural Science Foundation of China(Grant No.22175059)to provide fund for conducting experiments.
文摘The migration of nitroglycerin(NG) has always been the critical issue that harmfully impacts the structural integrity and operational reliability of the solid rocket motor, which is mainly composed by Nitrate Ester Plasticized Polyether(NEPE) propellant/Hydroxyl-terminated Polybutadiene(HTPB) liner/Ethylene Propylene Diene Monomer(EPDM) insulation bonding system. This paper proposes an innovative surface modification method attempting to modify the EPDM insulation layer coated with reduced graphene oxide(RGO), which exhibits ability to weaken the NG absorption by EPDM insulation layer,blocking the pathway of NG migration into EPDM insulation materials. The microstructure of RGO-coated layer was analyzed and the formation mechanism was investigated. The RGO-coated layer is well bonded to the HTPB liner, and its anti-migration performance to NG at different temperatures has been evaluated. Comparing with blank samples under the same storage conditions, the RGO-coated layers can reduce the diffusion coefficient of NG by up to 87.3% and increase the diffusion activation energy of NG by14.8 kJ,mol^(-1). This research provides a new strategy to effectively inhibit NG migration in NEPE propellant/HTPB liner/EPDM insulation bonding system.
基金the financial support of the National Natural Science Foundation of China(grant number 22005145)the Natural Science Foundation of Jiangsu Province(grant number BK20180495,BK20180698)+1 种基金the Opening Project of Key Laboratory of Special Energy Materials(Nanjing University of Science and Technology)the Fundamental Research Funds for the Priority Academic Program Development of Jiangsu Higher Education Institutions(grant number 30919011404)。
文摘Hydroxyl-terminated polybutadiene/toluene diisocyanate(HTPB/TDI)system is widely used in composite solid propellants.The migrations of plasticizers and water molecules from solid propellants and surrounding environment to the inhibitor have always been the important issues.This study focuses on the preparation,characterization and anti-migration behavior of graphene oxide(GO)/HTPB nanocomposite liner.The GO/HTPB(GH)composite liners affect the migration of small molecules through a tighter cross-linked structure and weakening function of small molecule adsorption.The anti-migration performance of the liner at different temperatures was analyzed,and the influence of the added amount of GO on the anti-migration performance and adhesion performance was also systematically studied.The overall performance of the liner is optimized when the amount of GO filler is 0.3 wt%.After adding 0.3 wt%GO,the concentration of dioctyl sebacate(DOS)migrated into the liner is decreased by 23.28%,and the concentration of water molecules is decreased by 51.89%,indicating that the introduction of GO can significantly improve the anti-migration performance of the liner.In addition,the bond strength is greatly increased from 0.25 MPa to 0.95 MPa,which meets the application requirements of the current propellant system.This research provides an important way for the preparation of structure-function synergistic anti-migration composite liners.