This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based ...To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.展开更多
Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential eq...Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential equations. The relation between the local truncation error in time domain and the error in frequency domain is established, which is the basis for developing the error estimation methods. The error estimation methods for the digital simulation model constructed by using the Runge-Kutta algorithms and the linear multistep predictor-corrector algorithms are also given.展开更多
This paper surveys a number of recent advances in the error analysis in the frequency domain for a digital simulation model. It is emphasized to discuss the errors in characteristic roots and transfer funcnon of the d...This paper surveys a number of recent advances in the error analysis in the frequency domain for a digital simulation model. It is emphasized to discuss the errors in characteristic roots and transfer funcnon of the digital simulation model, the frequency domain errors of the data transfers between thesimulation submodels, and some compensation methods for the errors. Some of the questions to be answered are also presented.展开更多
This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinat...This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
An efficient compensation scheme combining a timedomain Gaussian elimination(GE) channel estimator and a frequency-domain GE equalizer is proposed for orthogonal frequency division multiplexing(OFDM) systems with ...An efficient compensation scheme combining a timedomain Gaussian elimination(GE) channel estimator and a frequency-domain GE equalizer is proposed for orthogonal frequency division multiplexing(OFDM) systems with frequencydependent in-phase and quadrature-phase(IQ) imbalances at both transmitter and receiver.Compared with the traditional least square and least mean square compensation schemes,the proposed compensation scheme achieves the same bit error rate as the ideal IQ branches by using only two training OFDM symbols instead of about 20 OFDM symbols.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employi...This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.展开更多
The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formul...The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform. For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform. The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.展开更多
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite diff...It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金Project supported by National Basic Research Program of China(973 Program) (6131380301) National Natural Science Foundation of China (61001050).
文摘To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.
基金This project was supported by the National Natural Science Foundation of China (No. 19871080).
文摘Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential equations. The relation between the local truncation error in time domain and the error in frequency domain is established, which is the basis for developing the error estimation methods. The error estimation methods for the digital simulation model constructed by using the Runge-Kutta algorithms and the linear multistep predictor-corrector algorithms are also given.
文摘This paper surveys a number of recent advances in the error analysis in the frequency domain for a digital simulation model. It is emphasized to discuss the errors in characteristic roots and transfer funcnon of the digital simulation model, the frequency domain errors of the data transfers between thesimulation submodels, and some compensation methods for the errors. Some of the questions to be answered are also presented.
基金supported in part by the National Natural Science Foundation of China (60774071)the National High Technology Research and Development Program of China (863 Program) (2008AA121302)+1 种基金the Major State Basic Research Development Program of China (973 Program) (2009CB724000)the State Scholarship Fund of China
文摘This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61571088)the State High-Tech Development Plan(the 863 Program)(2015AA7031093B2015AA8098088B)
基金supported by the National Natural Science Fundation of China(6127123061172073)the Open Research Fund of National Mobile Communications Research Lab(2010D13)
文摘An efficient compensation scheme combining a timedomain Gaussian elimination(GE) channel estimator and a frequency-domain GE equalizer is proposed for orthogonal frequency division multiplexing(OFDM) systems with frequencydependent in-phase and quadrature-phase(IQ) imbalances at both transmitter and receiver.Compared with the traditional least square and least mean square compensation schemes,the proposed compensation scheme achieves the same bit error rate as the ideal IQ branches by using only two training OFDM symbols instead of about 20 OFDM symbols.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金Project supported by China Postdoctoral Science Foundation (20100481488), Key Fund Project of Advanced Research of the Weapon Equipment (9140A33040512JB3401).
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
基金supported by the National Natural Science Foundation of China (6057408860274014)
文摘This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.
文摘The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform. For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform. The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
基金Acknowledgments
This work was supported by the National High Technology Research and Development Program of China under grant No. 2006AAOAA102-12 and the National Natural Science Foundation of China (Grant No. 40774064). The authors would like to express their sincere thanks to TH oil field for providing field data sets.
基金supported by National Basic Research Program of China(973 Program)
文摘It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.